Do you want to publish a course? Click here

VLA/JVLA Monitoring of Bright Northern Radio Sources

133   0   0.0 ( 0 )
 Added by Noah Kurinsky
 Publication date 2012
  fields Physics
and research's language is English
 Authors Noah Kurinsky




Ask ChatGPT about the research

We report multiple epoch VLA/JVLA observations of 89 northern hemisphere sources, most with 37,GHz flux density > 1 Jy, observed at 4.8, 8.5, 33.5, and 43.3 GHz. The high frequency selection leads to a predominantly flat spectrum sample, with 85% of our sources being in the Planck Early Release Compact Source Catalog (ERCSC). These observations allow us to: 1) validate Plancks 30 and 44 GHz flux density scale, 2) extend the radio SEDs of Planck sources to lower frequencies allowing for the full 5-857GHz regime to be studied, and 3) characterize the variability of these sources. At 30 GHz and 44 GHz, the JVLA and Planck flux densities agree to within 3%. On timescales of less than two months the median variability of our sources is 2%. On timescales of about a year the median variability increases to 14%. Using the WMAP 7-year data, the 30 GHz median variability on a 1-6 years timescale is 16%.



rate research

Read More

240 - P. Tozzi 2009
We present the multiwavelength properties of 266 cataloged radio sources identified with 20 and 6 cm VLA deep observations of the CDFS at a flux density limit of 42 mu Jy at the field centre at 1.4 GHz. These new observations probe the faint end of both the star formation and radio galaxy/AGN population. X-ray data, including upper limits, turn out to be a key factor in establishing the nature of faint radio sources. We find that, while the well-known flattening of the radio number counts below 1 mJy is mostly due to star forming galaxies, these sources and AGN make up an approximately equal fraction of the sub--millijansky sky, contrary to some previous results. We have also uncovered a population of distant AGN systematically missing from many previous studies of sub-millijansky radio source identifications. The AGN include radio galaxies, mostly of the low-power, Fanaroff-Riley I type, and a significant radio-quiet component, which amounts to approximately one fifth of the total sample. We also find that radio detected, X-ray AGN are not more heavily obscured than the X-ray detected AGN. This argues against the use of radio surveys as an efficient way to search for the missing population of strongly absorbed AGN.
We have performed new 1.4 GHz and 5 GHz observations of the Local Group galaxy M33 with the Jansky Very Large Array. Our survey has a limiting sensitivity of 20 uJy (4-sigma) and a resolution of 5.9 arcsec (FWHM), corresponding to a spatial resolution of 24 pc at 817 kpc. Using a new multi-resolution algorithm, we have created a catalog of 2875 sources, including 675 with well-determined spectral indices. We detect sources at the position of 319 of the X-ray sources in the Tuellmann et al. (2011) Chandra survey of M33, the majority of which are likely to be background galaxies. The radio source coincident with M33 X-8, the nuclear source, appears to be extended. Along with numerous H II regions or portions of H II region complexes, we detect 155 of the 217 optical supernova remnants included in the lists of Long et al. (2010) and Lee & Lee (2014), making this by far the largest sample of remnants at known distances with multiwavelength coverage. The remnants show a large dispersion in the ratio of radio to X-ray luminosity at a given diameter, a result that challenges the current generation of models for synchrotron radiation evolution in supernova remnants. See http://sundog.stsci.edu/m33 for access to catalogs and images.
We present sensitive 2.1 and 3.3 cm JVLA radio continuum observations of the region IC 348 SW. We detect a total of 10 compact radio sources in the region, of which seven are first reported here. One of the sources is associated with the remarkable periodic time-variable infrared source LRLL 54361, opening the possibility of monitoring this object at radio wavelengths. Four of the sources appear to be powering outflows in the region, including HH 211 and HH 797. In the case of the rotating outflow HH 797 we detect at its center a double radio source, separated by $sim3$. Two of the sources are associated with infrared stars that possibly have gyrosynchrotron emission produced in active magnetospheres. Finally, three of the sources are interpreted as background objects.
161 - A. D. Biggs 2018
We have reanalysed the 1996/1997 VLA monitoring data of the gravitational lens system JVAS B0218+357 to produce improved total flux density and polarization variability curves at 15, 8.4 and 5 GHz. This has been done using improved calibration techniques, accurate subtraction of the emission from the Einstein ring and careful correction of various systematic effects, especially an offset in polarization position angle that is hour-angle dependent. The variations in total and polarized flux density give the best constraints and we determine a combined delay estimate of $11.3 pm 0.2$ d (1$sigma$). This is consistent with the $gamma$-ray value recently derived using the Fermi Gamma-ray Space Telescope and thus we find no evidence for a positional shift between the radio and $gamma$-ray emitting regions. Combined with the previously published lens model found using LensClean, the new delay gives a value for the Hubble constant of $H_0 = 72.9 pm 2.6$ km s$^{-1}$ Mpc$^{-1}$ (1$sigma$).
We present a preliminary survey of 58 radio sources within the isoplanatic patches (r < 25) of bright (11<R<12) stars suitable for use as natural guide stars with high-order adaptive optics (AO). An optical and near-infrared imaging survey was conducted utilizing tip-tilt corrections in the optical and AO in the near-infrared. Spectral Energy Distributions (SEDs) were fit to the multi-band data for the purpose of obtaining photometric redshifts using the Hyperz code. Several of these photometric redshifts were confirmed with spectroscopy, a result that gives more confidence to the redshift distribution for the whole sample. Additional long-wavelength data from Spitzer, SCUBA, SHARC2, and VLA supplement the optical and near-infrared data. We find the sample generally follows and extends the magnitude-redshift relation found for more powerful local radio galaxies. The survey has identified several reasonably bright (H=19-20) objects at significant redshifts (z>1) that are now within the capabilities of the current generation of AO-fed integral-field spectrographs. These objects constitute a unique sample that can be used for detailed ground-based AO studies of galactic structure, evolution, and AGN formation at high redshift.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا