Do you want to publish a course? Click here

Global Exponential Stability of Delayed Periodic Dynamical Systems

149   0   0.0 ( 0 )
 Added by Tianping Chen
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we discuss delayed periodic dynamical systems, compare capability of criteria of global exponential stability in terms of various $L^{p}$ ($1le p<infty$) norms. A general approach to investigate global exponential stability in terms of various $L^{p}$ ($1le p<infty$) norms is given. Sufficient conditions ensuring global exponential stability are given, too. Comparisons of various stability criteria are given. More importantly, it is pointed out that sufficient conditions in terms of $L^{1}$ norm are enough and easy to implement in practice.



rate research

Read More

345 - Bixiang Wang 2011
This paper is concerned with the dynamics of an infinite-dimensional gradient system under small almost periodic perturbations. Under the assumption that the original autonomous system has a global attractor given as the union of unstable manifolds of a finite number of hyperbolic equilibrium solutions, we prove that the perturbed non-autonomous system has exactly the same number of almost periodic solutions. As a consequence, the pullback attractor of the perturbed system is given by the union of unstable manifolds of these finitely many almost periodic solutions. An application of the result to the Chafee-Infante equation is discussed.
M. Kruskal showed that each nearly-periodic dynamical system admits a formal $U(1)$ symmetry, generated by the so-called roto-rate. We prove that such systems also admit nearly-invariant manifolds of each order, near which rapid oscillations are suppressed. We study the nonlinear normal stability of these slow manifolds for nearly-periodic Hamiltonian systems on barely symplectic manifolds -- manifolds equipped with closed, non-degenerate $2$-forms that may be degenerate to leading order. In particular, we establish a sufficient condition for long-term normal stability based on second derivatives of the well-known adiabatic invariant. We use these results to investigate the problem of embedding guiding center dynamics of a magnetized charged particle as a slow manifold in a nearly-periodic system. We prove that one previous embedding, and two new embeddings enjoy long-term normal stability, and thereby strengthen the theoretical justification for these models.
100 - Casian Pantea 2011
This paper concerns the long-term behavior of population systems, and in particular of chemical reaction systems, modeled by deterministic mass-action kinetics. We approach two important open problems in the field of Chemical Reaction Network Theory, the Persistence Conjecture and the Global Attractor Conjecture. We study the persistence of a large class of networks called lower-endotactic and in particular, we show that in weakly reversible mass-action systems with two-dimensional stoichiometric subspace all bounded trajectories are persistent. Moreover, we use these ideas to show that the Global Attractor Conjecture is true for systems with three-dimensional stoichiometric subspace.
There has been a long-standing and at times fractious debate whether complex and large systems can be stable. In ecology, the so-called `diversity-stability debate arose because mathematical analyses of ecosystem stability were either specific to a particular model (leading to results that were not general), or chosen for mathematical convenience, yielding results unlikely to be meaningful for any interesting realistic system. Mays work, and its subsequent elaborations, relied upon results from random matrix theory, particularly the circular law and its extensions, which only apply when the strengths of interactions between entities in the system are assumed to be independent and identically distributed (i.i.d.). Other studies have optimistically generalised from the analysis of very specific systems, in a way that does not hold up to closer scrutiny. We show here that this debate can be put to rest, once these two contrasting views have been reconciled --- which is possible in the statistical framework developed here. Here we use a range of illustrative examples of dynamical systems to demonstrate that (i) stability probability cannot be summarily deduced from any single property of the system (e.g. its diversity), and (ii) our assessment of stability depends on adequately capturing the details of the systems analysed. Failing to condition on the structure of dynamical systems will skew our analysis and can, even for very small systems, result in an unnecessarily pessimistic diagnosis of their stability.
158 - Vincent Andrieu 2016
We investigate how the following properties are related to each other: i)-A manifold is transversally exponentially stable; ii)-The transverse linearization along any solution in the manifold is exponentially stable; iii)-There exists a field of positive definite quadratic forms whose restrictions to the directions transversal to the manifold are decreasing along the flow. We illustrate their relevance with the study of exponential incremental stability. Finally, we apply these results to two control design problems, nonlinear observer design and synchronization. In particular, we provide necessary and sufficient conditions for the design of nonlinear observer and of nonlinear synchronizer with exponential convergence property.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا