Do you want to publish a course? Click here

Sequential products in effect categories

118   0   0.0 ( 0 )
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

A new categorical framework is provided for dealing with multiple arguments in a programming language with effects, for example in a language with imperative features. Like related frameworks (Monads, Arrows, Freyd categories), we distinguish two kinds of functions. In addition, we also distinguish two kinds of equations. Then, we are able to define a kind of product, that generalizes the usual categorical product. This yields a powerful tool for deriving many results about languages with effects.



rate research

Read More

Restriction categories were introduced to provide an axiomatic setting for the study of partially defined mappings; they are categories equipped with an operation called restriction which assigns to every morphism an endomorphism of its domain, to be thought of as the partial identity that is defined to just the same degree as the original map. In this paper, we show that restriction categories can be identified with emph{enriched categories} in the sense of Kelly for a suitable enrichment base. By varying that base appropriately, we are also able to capture the notions of join and range restriction category in terms of enriched category theory.
The category of Hilbert modules may be interpreted as a naive quantum field theory over a base space. Open subsets of the base space are recovered as idempotent subunits, which form a meet-semilattice in any firm braided monoidal category. There is an operation of restriction to an idempotent subunit: it is a graded monad on the category, and has the universal property of algebraic localisation. Spacetime structure on the base space induces a closure operator on the idempotent subunits. Restriction is then interpreted as spacetime propagation. This lets us study relativistic quantum information theory using methods entirely internal to monoidal categories. As a proof of concept, we show that quantum teleportation is only successfully supported on the intersection of Alice and Bobs causal future.
We develop a notion of limit for dagger categories, that we show is suitable in the following ways: it subsumes special cases known from the literature; dagger limits are unique up to unitary isomorphism; a wide class of dagger limits can be built from a small selection of them; dagger limits of a fixed shape can be phrased as dagger adjoints to a diagonal functor; dagger limits can be built from ordinary limits in the presence of polar decomposition; dagger limits commute with dagger colimits in many cases.
We introduce the notions of proto-complete, complete, complete* and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete.
We exhibit the cartesian differential categories of Blute, Cockett and Seely as a particular kind of enriched category. The base for the enrichment is the category of commutative monoids -- or in a straightforward generalisation, the category of modules over a commutative rig $k$. However, the tensor product on this category is not the usual one, but rather a warping of it by a certain monoidal comonad $Q$. Thus the enrichment base is not a monoidal category in the usual sense, but rather a skew monoidal category in the sense of Szlachanyi. Our first main result is that cartesian differential categories are the same as categories with finite products enriched over this skew monoidal base. The comonad $Q$ involved is, in fact, an example of a differential modality. Differential modalities are a kind of comonad on a symmetric monoidal $k$-linear category with the characteristic feature that their co-Kleisli categories are cartesian differential categories. Using our first main result, we are able to prove our second one: that every small cartesian differential category admits a full, structure-preserving embedding into the cartesian differential category induced by a differential modality (in fact, a monoidal differential modality on a monoidal closed category -- thus, a model of intuitionistic differential linear logic). This resolves an important open question in this area.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا