No Arabic abstract
We exhibit the cartesian differential categories of Blute, Cockett and Seely as a particular kind of enriched category. The base for the enrichment is the category of commutative monoids -- or in a straightforward generalisation, the category of modules over a commutative rig $k$. However, the tensor product on this category is not the usual one, but rather a warping of it by a certain monoidal comonad $Q$. Thus the enrichment base is not a monoidal category in the usual sense, but rather a skew monoidal category in the sense of Szlachanyi. Our first main result is that cartesian differential categories are the same as categories with finite products enriched over this skew monoidal base. The comonad $Q$ involved is, in fact, an example of a differential modality. Differential modalities are a kind of comonad on a symmetric monoidal $k$-linear category with the characteristic feature that their co-Kleisli categories are cartesian differential categories. Using our first main result, we are able to prove our second one: that every small cartesian differential category admits a full, structure-preserving embedding into the cartesian differential category induced by a differential modality (in fact, a monoidal differential modality on a monoidal closed category -- thus, a model of intuitionistic differential linear logic). This resolves an important open question in this area.
We revisit the definition of Cartesian differential categories, showing that a slightly more general version is useful for a number of reasons. As one application, we show that these general differential categories are comonadic over Cartesian categories, so that every Cartesian category has an associated cofree differential category. We also work out the corresponding results when the categories involved have restriction structure, and show that these categories are closed under splitting restriction idempotents.
Cartesian differential categories were introduced to provide an abstract axiomatization of categories of differentiable functions. The fundamental example is the category whose objects are Euclidean spaces and whose arrows are smooth maps. Tensor differential categories provide the framework for categorical models of differential linear logic. The coKleisli category of any tensor differential category is always a Cartesian differential category. Cartesian differential categories, besides arising in this manner as coKleisli categories, occur in many different and quite independent ways. Thus, it was not obvious how to pass from Cartesian differential categories back to tensor differential categories. This paper provides natural conditions under which the linear maps of a Cartesian differential category form a tensor differential category. This is a question of some practical importance as much of the machinery of modern differential geometry is based on models which implicitly allow such a passage, and thus the results and tools of the area tend to freely assume access to this structure. The purpose of this paper is to make precise the connection between the two types of differential categories. As a prelude to this, however, it is convenient to have available a general theory which relates the behaviour of linear maps in Cartesian categories to the structure of Seely categories. The latter were developed to provide the categorical semantics for (fragments of) linear logic which use a storage modality. The general theory of storage, which underlies the results mentioned above, is developed in the opening sections of the paper and is then applied to the case of differential categories.
Restriction categories were introduced to provide an axiomatic setting for the study of partially defined mappings; they are categories equipped with an operation called restriction which assigns to every morphism an endomorphism of its domain, to be thought of as the partial identity that is defined to just the same degree as the original map. In this paper, we show that restriction categories can be identified with emph{enriched categories} in the sense of Kelly for a suitable enrichment base. By varying that base appropriately, we are also able to capture the notions of join and range restriction category in terms of enriched category theory.
This is the first of a series of papers on enriched infinity categories, seeking to reduce enriched higher category theory to the higher algebra of presentable infinity categories, which is better understood and can be approached via universal properties. In this paper, we introduce enriched presheaves on an enriched infinity category. We prove analogues of most familiar properties of presheaves. For example, we compute limits and colimits of presheaves, prove that all presheaves are colimits of representable presheaves, and prove a version of the Yoneda lemma.
This work is the first one in a series, in which we develop a mathematical theory of enriched (braided) monoidal categories and their representations. In this work, we introduce the notion of the $E_0$-center ($E_1$-center or $E_2$-center) of an enriched (monoidal or braided monoidal) category, and compute the centers explicitly when the enriched (braided monoidal or monoidal) categories are obtained from the canonical constructions. These centers have important applications in the mathematical theory of gapless boundaries of 2+1D topological orders and that of topological phase transitions in physics. They also play very important roles in the higher representation theory, which is the focus of the second work in the series.