Do you want to publish a course? Click here

Poincare duality and Periodicity

195   0   0.0 ( 0 )
 Added by John R. Klein
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We construct periodic families of Poincare complexes, partially solving a question of Hodgson that was posed in the proceedings of the 1982 Northwestern homotopy theory conference. We also construct infinite families of Poincare complexes whose top cell falls off after one suspension but which fail to embed in a sphere of codimension one. We give a homotopy theoretic description of the four-fold periodicity in knot cobordism.



rate research

Read More

In this note we compute the topological Hochschild homology of quotients of DVRs. Along the way we give a short argument for Bokstedt periodicity and generalizations over various other bases. Our strategy also gives a very efficient way to redo the computations of THH (resp. logarithmic THH) of complete DVRs originally due to Lindenstrauss-Madsen (resp. Hesselholt-Madsen).
We introduce a spectrum of monotone coarse invariants for metric measure spaces called Poincar{e} profiles. The two extremes of this spectrum determine the growth of the space, and the separation profile as defined by Benjamini--Schramm--Tim{a}r. In this paper we focus on properties of the Poincar{e} profiles of groups with polynomial growth, and of hyperbolic spaces, where we deduce a connection between these profiles and conformal dimension. As applications, we use these invariants to show the non-existence of coarse embeddings in a variety of examples.
406 - Ulrich Bunke 2010
The initial motivation of this work was to give a topological interpretation of two-periodic twisted de-Rham cohomology which is generalizable to arbitrary coefficients. To this end we develop a sheaf theory in the context of locally compact topological stacks with emphasis on the construction of the sheaf theory operations in unbounded derived categories, elements of Verdier duality and integration. The main result is the construction of a functorial periodization functor associated to a U(1)-gerbe. As applications we verify the $T$-duality isomorphism in periodic twisted cohomology and in periodic twisted orbispace cohomology.
We generalize Quillens $F$-isomorphism theorem, Quillens stratification theorem, the stable transfer, and the finite generation of cohomology rings from finite groups to homotopical groups. As a consequence, we show that the category of module spectra over $C^*(Bmathcal{G},mathbb{F}_p)$ is stratified and costratified for a large class of $p$-local compact groups $mathcal{G}$ including compact Lie groups, connected $p$-compact groups, and $p$-local finite groups, thereby giving a support-theoretic classification of all localizing and colocalizing subcategories of this category. Moreover, we prove that $p$-compact groups admit a homotopical form of Gorenstein duality.
177 - Hossein Abbaspour 2018
In this article we lay out the details of Fukayas $A_infty$-structure of the Morse complexe of a manifold possibly with boundary. We show that this $A_infty$-structure is homotopically independent of the made choices. We emphasize the transversality arguments that make some fiber products smooth.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا