Do you want to publish a course? Click here

AC susceptibility and $^{51}$V NMR study of MnV$_2$O$_4$

110   0   0.0 ( 0 )
 Added by Seung-Ho Baek
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report $^{51}$V zero-field NMR of manganese vanadate spinel of MnV$_2$O$_4$, together with both ac and dc magnetization measurements. The field and temperature dependence of ac susceptibilities show a reentrant-spin-glass-like behavior below the ferrimagnetic(FEM) ordering temperature. The zero-field NMR spectrum consists of multiple lines ranging from 240 MHz to 320 MHz. Its temperature dependence reveals that the ground state is given by the simultaneous formation of a long-range FEM order and a short-range order component. We attribute the spin-glass-like anomalies to freezing and fluctuations of the short-range ordered state caused by the competition between spin and orbital ordering of the V site.



rate research

Read More

220 - X. Zong , B. J. Suh , A. Niazi 2007
$^{51}$V NMR studies on CaV2O4 single crystals and $^{17}$O NMR studies on $^{17}$O-enriched powder samples are reported. The temperature dependences of the $^{17}$O NMR line width and nuclear spin-lattice relaxation rate give strong evidence for a long-range antiferromagnetic transition at Tn = 78 K in the powder. Magnetic susceptibility measurements show that Tn = 69 K in the crystals. A zero-field $^{51}$V NMR signal was observed at low temperatures (f $approx$ 237 MHz at 4.2 K) in the crystals. The field swept spectra with the field in different directions suggest the presence of two antiferromagnetic substructures. Each substructure is collinear, with the easy axes of the two substructures separated by an angle of 19(1) degree, and with their average direction pointing approximately along the b-axis of the crystal structure. The two spin substructures contain equal number of spins. The temperature dependence of the ordered moment, measured up to 45 K, shows the presence of an energy gap Eg in the antiferromagnetic spin wave excitation spectrum. Antiferromagnetic spin wave theory suggests that Eg lies between 64 and 98 K.
We study the exchange constants of MnV$_2$O$_4$ using magnetic force theorem and local spin density approximation of density functional theory supplemented with a correction due to on-site Hubbard interaction U. We obtain the exchanges for three different orbital orderings of the Vanadium atoms of the spinel. We then map the exchange constants to a Heisenberg model with single-ion anisotropy and solve for the spin-wave excitations in the non-collinear, low temperature phase of the spinel. The single-ion anisotropy parameters are obtained from an atomic multiplet exact-diagonalization program, taking into effect the crystal-field splitting and the spin-orbit coupling. We find good agreement between the spin waves of one of our orbital ordered setups with previously reported experimental spin waves as determined by neutron scattering. We can therefore determine the correct orbital order from various proposals that exist in the literature.
The spinel NiCr$_2$O$_4$ is known to show a ferrimagnetic transition at $T_c = 70$~K, and magneto-structural transitions at $T_s = 30$~K and $T_o = 20$~K@. We present a detailed magnetic and magnetocaloric effect (MCE $= -Delta S_{M}(T)$) study across these transitions. The $-Delta S_{M}(T)$ shows a positive anomaly at $T_c$, $T_s$, and $T_o$. In addition to these anomalies, we report a new unreported feature at $T approx 8.5$~K where $-Delta S_{M}(T)$ shows a negative anomaly or the inverse MCE. An Arrot plot of the isothermal magnetization data reveals important information about the nature of the possible phases revealed in $-Delta S_{M}(T)$. We have also made a scaling analysis of the $-Delta S_{M}(T)$ data around these transitions. This analysis suggests that the transition at $T_c$ is a second-order Mean field like transition, the transition at $T_s$ is not second order and is non-mean field like, while the new transition at $T = 8.5$~K is non-mean field like but is second order in nature. Our study demonstrates that magnetocaloric effect is sensitive to magneto-structural changes in materials and can be used for the identification of new phases and transitions.
We study the many-body electronic structure of the stoichiometric and electron-doped trilayer nickelate Pr$_4$Ni$_3$O$_8$ in comparison to that of the stoichiometric and hole-doped infinite layer nickelate NdNiO$_2$ within the framework of density functional plus dynamical mean field theory, noting that Pr$_4$Ni$_3$O$_8$ has the same nominal carrier concentration as NdNiO$_2$ doped to a level of 1/3 holes/Ni. We find that the correlated Ni-$3d$ shells of both of these low valence nickelates have similar many-body configurations with correlations dominated by the $d_{x^2-y^2}$ orbital. Additionally, when compared at the same nominal carrier concentration, the materials exhibit similar many-body electronic structures, self energies, and correlation strengths. Compared to cuprates, these materials are closer to the Mott-Hubbard regime due to their larger charge transfer energies. Moreover, doping involves the charge reservoir provided by the rare earth $5d$ electrons, as opposed to cuprates where it is realized via the oxygen $2p$ electrons.
The A-site spinel material, CoAl2O4, is a physical realization of the frustrated diamond-lattice antiferromagnet, a model in which is predicted to contain unique incommensurate or `spin-spiral liquid ground states. Our previous single-crystal neutron scattering study instead classified it as a `kinetically-inhibited antiferromagnet, where the long ranged correlations of a collinear Neel ground state are blocked by the freezing of domain wall motion below a first-order phase transition at T* = 6.5 K. The current paper expands on our original results in several important ways. New elastic and inelastic neutron measurements are presented that show our initial conclusions are affected by neither the sample measured nor the instrument resolution, while measurements to temperatures as low as T = 250 mK limit the possible role being played by low-lying thermal excitations. Polarized diffuse neutron measurements confirm reports of short-range antiferromagnetic correlations and diffuse streaks of scattering, but major diffuse features are explained as signatures of overlapping critical correlations between neighboring Brillouin zones. Finally, and critically, this paper presents detailed elastic and inelastic measurements of magnetic correlations in a single-crystal of MnAl2O4, which acts as an unfrustrated analogue to CoAl2O4. The unfrustrated material is shown to have a classical continuous phase transition to Neel order at T_N = 39 K, with collective spinwave excitations and Lorentzian-like critical correlations which diverge at the transition. Direct comparison between the two compounds indicates that CoAl2O4 is unique, not in the nature of high-temperature diffuse correlations, but rather in the nature of the frozen state below T*. The higher level of cation inversion in the MnAl2O4 sample indicates that this novel behavior is primarily an effect of greater next-nearest-neighbor exchange.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا