This paper is devoted to detailed investigations of free scalar field theory on $kappa$-Minkowski space. After reviewing necessary mathematical tools we discuss in depth the Lagrangian and solutions of field equations. We analyze the spacetime symmetries of the model and construct the conserved charges associated with translational and Lorentz symmetry. We show that the version of the theory usually studied breaks Lorentz invariance in a subtle way: There is an additional trans-Planckian mode present, and an associated conserved charge (the number of such modes) is not a Lorentz scalar.
We describe $kappa$-Minkowski space and its relation to group theory. The group theoretical picture makes it possible to analyze the symmetries of this space. As an application of this analysis we analyze in detail free field theory on $kappa$-Minkowski space and the Noether charges associated with deformed spacetime symmetries.
In this paper we recall the construction of scalar field action on $kappa$-Minkowski space-time and investigate its properties. In particular we show how the co-product of $kappa$-Poincare algebra of symmetries arises from the analysis of the symmetries of the action, expressed in terms of Fourier transformed fields. We also derive the action on commuting space-time, equivalent to the original one. Adding the self-interaction $Phi^4$ term we investigate the modified conservation laws. We show that the local interactions on $kappa$-Minkowski space-time give rise to 6 inequivalent ways in which energy and momentum can be conserved at four-point vertex. We discuss the relevance of these results for Doubly Special Relativity.
We study the spontaneous Lorentz symmetry breaking in a field theoretical model in (2+1)-dimension, inspired by string theory. This model is a gauge theory of an anti-symmetric tensor field and a vector field (photon). The Nambu-Goldstone (NG) boson for the spontaneous Lorentz symmetry breaking is identified with the unphysical massless photon in the covariant quantization. We also discuss an analogue of the equivalence theorem between the amplitudes for emission or absorption of the physical massive anti-symmetric tensor field and those of the unphysical massless photon. The low-energy effective action of the NG-boson is also discussed.
We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and, then, some examples of Lorentz-violating extensions of scalar QED. We observed, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz-symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we studied depend on the background tensors responsible for the Lorentz symmetry violation. This have consequences in physical quantities like, for example, in the induced mass due to Coleman-Weinberg mechanism.
In this paper we discuss a disordered $d$-dimensional Euclidean $lambdavarphi^{4}$ model. The dominant contribution to the average free energy of this system is written as a series of the replica partition functions of the model. In each replica partition function, using the saddle-point equations and imposing the replica symmetric ansatz, we show the presence of a spontaneous symmetry breaking mechanism in the disordered model. Moreover, the leading replica partition function must be described by a large-$N$ Euclidean replica field theory. We discuss finite temperature effects considering periodic boundary condition in Euclidean time and also using the Landau-Ginzburg approach. In the low temperature regime we prove the existence of $N$ instantons in the model.
L. Freidel
,J. Kowalski-Glikman
,S. Nowak
.
(2007)
.
"Field theory on $kappa$--Minkowski space revisited: Noether charges and breaking of Lorentz symmetry"
.
Jerzy Kowalski-Glikman
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا