No Arabic abstract
The influence of a time-varying ram pressure on spiral galaxies in clusters is explored with a new simulation method based on the N-body SPH/tree code GADGET. We have adapted the code to describe the interaction of two different gas phases, the diffuse hot intracluster medium (ICM) and the denser and colder interstellar medium (ISM). Both the ICM and ISM components are introduced as SPH particles. As a galaxy arrives on a highly radial orbit from outskirts to cluster center, it crosses the ICM density peak and experiences a time-varying wind. Depending on the duration and intensity of the ISM-ICM interaction, early and late type galaxies in galaxy clusters with either a large or small ICM distribution are found to show different stripping efficiencies, amounts of reaccretion of the extra-planar ISM, and final masses. We compare the numerical results with analytical approximations of different complexity and indicate the limits of the Gunn & Gott simple stripping formula. Our investigations emphasize the role of the galactic orbital history to the stripping amount. We discuss the contribution of ram pressure stripping to the origin of the ICM and its metallicity. We propose gas accumulations like tails, filaments, or ripples to be responsible for stripping in regions with low overall ICM occurrence.
We present a new approach to simulating mixtures of gas and dust in smoothed particle hydrodynamics (SPH). We show how the two-fluid equations can be rewritten to describe a single-fluid mixture moving with the barycentric velocity, with each particle carrying a dust fraction. We show how this formulation can be implemented in SPH while preserving the conservation properties (i.e. conservation of mass of each phase, momentum and energy). We also show that the method solves two key issues with the two fluid approach: it avoids over-damping of the mixture when the drag is strong and prevents a problem with dust particles becoming trapped below the resolution of the gas. We also show how the general one-fluid formulation can be simplified in the limit of strong drag (i.e. small grains) to the usual SPH equations plus a diffusion equation for the evolution of the dust fraction that can be evolved explicitly and does not require any implicit timestepping. We present tests of the simplified formulation showing that it is accurate in the small grain/strong drag limit. We discuss some of the issues we have had to solve while developing this method and finally present a preliminary application to dust settling in protoplanetary discs.
While galaxies move through the intracluster medium of their host cluster, they experience a ram pressure which removes at least a significant part of their interstellar medium. This ram pressure stripping appears to be especially important for spiral galaxies: this scenario is a good candidate to explain the differences observed between cluster spirals in the nearby universe and their field counterparts. Thus, ram pressure stripping of disk galaxies in clusters has been studied intensively during the last decade. I review advances made in this area, concentrating on theoretical work, but continuously comparing to observations.
Neutral Particle Analyzer (NPA) is one of the crucial diagnostic devices on Tokamak facilities. Stripping unit is one of the main parts of the NPA. A windowless gas stripping room with two differential pipes is adopted in a parallel direction of electric and magnetic fields (E//B) NPA. The pressure distributions in the stripping chamber are simulated by Ansys Fluent together with MolFlow+. Based on the pressure distributions extracted from the simulation, the stripping efficiency of the E//B NPA is studied with GEANT4. The hadron reaction physics is modified to track the charge state of each particle in a cross section base method in GEANT4. The transmission rates ($R$) and the stripping efficiencies $f_{+1}$ are examined for the particle energy ranging from 20 to 200 keV at the input pressure ($P_0$) ranging from 20 to 400 Pa. According to the combined global efficiency, $R times f_{+1}$, $P_0$ = 240 Pa is obtained as the optimum pressure for the maximum global efficiency in the incident energy range investigated.
Ram-pressure stripping by the gaseous intra-cluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to relatively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at $z>0.3$. Using Hubble Space Telescope snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts of gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster Galaxy. Based on the spatial distribution and orientation of systems viewed nearly edge-on in our survey, we speculate that infall at large impact parameter gives rise to particularly long-lasting stripping events. Our sample of six spectacular examples identified in clusters from the Massive Cluster Survey, all featuring $M_{rm F606W}<-$21 mag, doubles the number of such systems presently known at $z>0.2$ and facilitates detailed quantitative studies of the most violent galaxy evolution in clusters.
Recent molecular line observations with ALMA and NOEMA in several Brightest Cluster Galaxies (BCG) have revealed the large-scale filamentary structure at the center of cool core clusters. These filaments extend over 20-100kpc, they are tightly correlated with ionized gas (H$alpha$, [NII]) emission, and have characteristic shapes: either radial and straight, or also showing a U-turn, like a horse-shoe structure. The kinematics is quite regular and laminar, and the derived infall time is much longer than the free-fall time. The filaments extend up to the radius where the cooling time becomes larger than the infall time. Filaments can be perturbed by the sloshing of the BCG in its cluster, and spectacular cooling wakes have been observed. Filaments tend to occur at the border of cavities driven in the X-ray gas by the AGN radio jets. Observations of cool core clusters support the thermal instability scenario, which accounts for the multiphase medium in the upper atmospheres of BCG, where the right balance between heating and cooling is reached, and a chaotic cold gas accretion occurs. Molecular filaments are also seen associated to ram-pressure stripped spiral galaxies in rich galaxy clusters, and in jet-induced star formation, suggesting a very efficient molecular cloud formation even in hostile cluster environments.