Do you want to publish a course? Click here

Jellyfish: Evidence of extreme ram-pressure stripping in massive galaxy clusters

148   0   0.0 ( 0 )
 Added by Harald Ebeling
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ram-pressure stripping by the gaseous intra-cluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to relatively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at $z>0.3$. Using Hubble Space Telescope snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts of gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster Galaxy. Based on the spatial distribution and orientation of systems viewed nearly edge-on in our survey, we speculate that infall at large impact parameter gives rise to particularly long-lasting stripping events. Our sample of six spectacular examples identified in clusters from the Massive Cluster Survey, all featuring $M_{rm F606W}<-$21 mag, doubles the number of such systems presently known at $z>0.2$ and facilitates detailed quantitative studies of the most violent galaxy evolution in clusters.



rate research

Read More

Numerous examples of ram pressure stripping in galaxy clusters are present in literature; however, substantially less work has been focused on ram pressure stripping in lower mass groups. In this work we use the LOFAR Two-metre Sky Survey (LoTSS) to search for jellyfish galaxies in ~500 SDSS groups (z<0.05), making this the most comprehensive search for ram pressure stripping in groups to date. We identify 60 jellyfish galaxies in groups with extended, asymmetric radio continuum tails, which are found across the entire range of group mass from $10^{12.5} < M_mathrm{group} < 10^{14},h^{-1},mathrm{M_odot}$. We compare the group jellyfish galaxies identified in this work with the LoTSS jellyfish galaxies in clusters presented in Roberts et al. (2021), allowing us to compare the effects of ram pressure stripping across three decades in group/cluster mass. We find that jellyfish galaxies are most commonly found in clusters, with the frequency decreasing towards the lowest mass groups. Both the orientation of observed radio continuum tails, and the positions of group jellyfish galaxies in phase space, suggest that galaxies are stripped more slowly in groups relative to clusters. Finally, we find that the star formation rates of jellyfish galaxies in groups are consistent with `normal star-forming group galaxies, which is in contrast to cluster jellyfish galaxies that have clearly enhanced star formation rates. On the whole, there is clear evidence for ongoing ram pressure stripping in galaxy groups (down to very low group masses), though the frequency of jellyfish galaxies and the strength of ram pressure stripping appears smaller in groups than clusters. Differences in the efficiency of ram pressure stripping in groups versus clusters likely contributes to the positive trend between quenched fraction and host halo mass observed in the local Universe.
X-ray studies of jellyfish galaxies play a crucial role in understanding the interactions between the interstellar medium (ISM) and the intracluster medium (ICM). In this paper, we focused on the jellyfish galaxy JO201. By combining archival Chandra observations, MUSE H$alpha$ cubes, and maps of the emission fraction of the diffuse ionised gas, we investigated both its high energy spectral properties and the spatial correlation between its X-ray and optical emissions. The X-ray emission of JO201 is provided by both the Compton thick AGN (L$_{text{X}}^{0.5-10 text{keV}}$=2.7$cdot$10$^{41}$ erg s$^{-1}$, not corrected for intrinsic absorption) and an extended component (L$_{text{X}}^{0.5-10 , text{keV}}approx$1.9-4.5$cdot$10$^{41}$ erg s$^{-1}$) produced by a warm plasma (kT$approx$1 keV), whose luminosity is higher than expected from the observed star formation (L$_{text{X}}sim$3.8$cdot10^{40}$ erg s$^{-1}$). The spectral analysis showed that the X-ray emission is consistent with the thermal cooling of hot plasma. These properties are similar to the ones found in other jellyfish galaxies showing extended X-ray emission. A point-to-point analysis revealed that this X-ray emission closely follows the ISM distribution, whereas CLOUDY simulations proved that the ionisation triggered by this warm plasma would be able to reproduce the [OI]/H$alpha$ excess observed in JO201. We conclude that the galactic X-ray emitting plasma is originated on the surface of the ISM as a result of the ICM-ISM interplay. This process would entail the cooling and accretion of the ICM onto the galaxy, which could additionally fuel the star formation, and the emergence of [OI]/H$alpha$ excess in the optical spectrum.
142 - E. Roediger 2009
While galaxies move through the intracluster medium of their host cluster, they experience a ram pressure which removes at least a significant part of their interstellar medium. This ram pressure stripping appears to be especially important for spiral galaxies: this scenario is a good candidate to explain the differences observed between cluster spirals in the nearby universe and their field counterparts. Thus, ram pressure stripping of disk galaxies in clusters has been studied intensively during the last decade. I review advances made in this area, concentrating on theoretical work, but continuously comparing to observations.
It is well known that galaxies falling into clusters can experience gas stripping due to ram-pressure by the intra-cluster medium (ICM). The most spectacular examples are galaxies with extended tails of optically-bright stripped material known as jellyfish. We use the first large homogeneous compilation of jellyfish galaxies in clusters from the WINGS and OmegaWINGS surveys, and follow-up MUSE observations from the GASP MUSE programme to investigate the orbital histories of jellyfish galaxies in clusters and reconstruct their stripping history through position vs. velocity phase- space diagrams. We construct analytic models to define the regions in phase-space where ram-pressure stripping is at play. We then study the distribution of cluster galaxies in phase-space and find that jellyfish galaxies have on average higher peculiar velocities (and higher cluster velocity dispersion) than the overall population of cluster galaxies at all clustercentric radii, which is indicative of recent infall into the cluster and radial orbits. In particular, the jellyfish galaxies with the longest gas tails reside very near the cluster cores (in projection) and are moving at very high speeds, which coincides with the conditions of the most intense ram-pressure. We conclude that many of the jellyfish galaxies seen in clusters likely formed via fast (~1- 2 Gyr), incremental, outside-in ram-pressure stripping during first infall into the cluster in highly radial orbits.
This paper presents a spatially-resolved kinematic study of the jellyfish galaxy JO201, one of the most spectacular cases of ram-pressure stripping (RPS) in the GASP (GAs Stripping Phenomena in Galaxies with MUSE) survey. By studying the environment of JO201, we find that it is moving through the dense intra-cluster medium of Abell 85 at supersonic speeds along our line of sight, and that it is likely accompanied by a small group of galaxies. Given the density of the intra-cluster medium and the galaxys mass, projected position and velocity within the cluster, we estimate that JO201 must so far have lost ~50% of its gas during infall via RPS. The MUSE data indeed reveal a smooth stellar disk, accompanied by large projected tails of ionised (Halpha) gas, composed of kinematically cold (velocity dispersion <40km/s) star-forming knots and very warm (>100km/s) diffuse emission which extend out to at least ~50 kpc from the galaxy centre. The ionised Halpha-emitting gas in the disk rotates with the stars out to ~6 kpc but in the disk outskirts becomes increasingly redshifted with respect to the (undisturbed) stellar disk. The observed disturbances are consistent with the presence of gas trailing behind the stellar component, resulting from intense face-on RPS happening along the line of sight. Our kinematic analysis is consistent with the estimated fraction of lost gas, and reveals that stripping of the disk happens outside-in, causing shock heating and gas compression in the stripped tails.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا