Do you want to publish a course? Click here

Statistical testing procedure for the interaction effects of several controllable factors in two-valued input-output systems

111   0   0.0 ( 0 )
 Added by Satoshi Aoki
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

Suppose several two-valued input-output systems are designed by setting the levels of several controllable factors. For this situation, Taguchi method has proposed to assign the controllable factors to the orthogonal array and use ANOVA model for the standardized SN ratio, which is a natural measure for evaluating the performance of each input-output system. Though this procedure is simple and useful in application indeed, the result can be unreliable when the estimated standard errors of the standardized SN ratios are unbalanced. In this paper, we treat the data arising from the full factorial or fractional factorial designs of several controllable factors as the frequencies of high-dimensional contingency tables, and propose a general testing procedure for the main effects or the interaction effects of the controllable factors.



rate research

Read More

Motivated by an open problem of validating protein identities in label-free shotgun proteomics work-flows, we present a testing procedure to validate class/protein labels using available measurements across instances/peptides. More generally, we present a solution to the problem of identifying instances that are deemed, based on some distance (or quasi-distance) measure, as outliers relative to the subset of instances assigned to the same class. The proposed procedure is non-parametric and requires no specific distributional assumption on the measured distances. The only assumption underlying the testing procedure is that measured distances between instances within the same class are stochastically smaller than measured distances between instances from different classes. The test is shown to simultaneously control the Type I and Type II error probabilities whilst also controlling the overall error probability of the repeated testing invoked in the validation procedure of initial class labeling. The theoretical results are supplemented with results from an extensive numerical study, simulating a typical setup for labeling validation in proteomics work-flow applications. These results illustrate the applicability and viability of our method. Even with up to 25% of instances mislabeled, our testing procedure maintains a high specificity and greatly reduces the proportion of mislabeled instances.
We study the problem of deriving a specification for a third-party component, based on the specification of the system and the environment in which the component is supposed to reside. Particularly, we are interested in using component specifications for conformance testing of black-box components, using the theory of input-output conformance (ioco) testing. We propose and prove sufficient criteria for decompositionality, i.e., that components conforming to the derived specification will always compose to produce a correct system with respect to the system specification. We also study the criteria for strong decomposability, by which we can ensure that only those components conforming to the derived specification can lead to a correct system.
68 - Sascha Kurz 2021
The Public Good index is a power index for simple games introduced by Holler and later axiomatized by Holler and Packel, so that some authors also speak of the Holler--Packel index. A generalization to the class of games with transferable utility was given by Holler and Li. Here we generalize the underlying ideas to games with several levels of approval in the input and output -- so-called $(j,k)$ simple games. Corresponding axiomatizations are also provided.
We present a general framework for hypothesis testing on distributions of sets of individual examples. Sets may represent many common data sources such as groups of observations in time series, collections of words in text or a batch of images of a given phenomenon. This observation pattern, however, differs from the common assumptions required for hypothesis testing: each set differs in size, may have differing levels of noise, and also may incorporate nuisance variability, irrelevant for the analysis of the phenomenon of interest; all features that bias test decisions if not accounted for. In this paper, we propose to interpret sets as independent samples from a collection of latent probability distributions, and introduce kernel two-sample and independence tests in this latent space of distributions. We prove the consistency of tests and observe them to outperform in a wide range of synthetic experiments. Finally, we showcase their use in practice with experiments of healthcare and climate data, where previously heuristics were needed for feature extraction and testing.
99 - Aivar Sootla 2015
In this paper, we consider the systems with trajectories originating in the nonnegative orthant becoming nonnegative after some finite time transient. First we consider dynamical systems (i.e., fully observable systems with no inputs), which we call eventually positive. We compute forward-invariant cones and Lyapunov functions for these systems. We then extend the notion of eventually positive systems to the input-output system case. Our extension is performed in such a manner, that some valuable properties of classical internally positive input-output systems are preserved. For example, their induced norms can be computed using linear programming and the energy functions have nonnegative derivatives.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا