No Arabic abstract
We present a general framework for hypothesis testing on distributions of sets of individual examples. Sets may represent many common data sources such as groups of observations in time series, collections of words in text or a batch of images of a given phenomenon. This observation pattern, however, differs from the common assumptions required for hypothesis testing: each set differs in size, may have differing levels of noise, and also may incorporate nuisance variability, irrelevant for the analysis of the phenomenon of interest; all features that bias test decisions if not accounted for. In this paper, we propose to interpret sets as independent samples from a collection of latent probability distributions, and introduce kernel two-sample and independence tests in this latent space of distributions. We prove the consistency of tests and observe them to outperform in a wide range of synthetic experiments. Finally, we showcase their use in practice with experiments of healthcare and climate data, where previously heuristics were needed for feature extraction and testing.
Motivated by gene set enrichment analysis, we investigate the problem of combined hypothesis testing on a graph. We introduce a general framework to effectively use the structural information of the underlying graph when testing multivariate means. A new testing procedure is proposed within this framework. We show that the test is optimal in that it can consistently detect departure from the collective null at a rate that no other test could improve, for almost all graphs. We also provide general performance bounds for the proposed test under any specific graph, and illustrate their utility through several common types of graphs. Numerical experiments are presented to further demonstrate the merits of our approach.
We present a study of generalization for data-dependent hypothesis sets. We give a general learning guarantee for data-dependent hypothesis sets based on a notion of transductive Rademacher complexity. Our main result is a generalization bound for data-dependent hypothesis sets expressed in terms of a notion of hypothesis set stability and a notion of Rademacher complexity for data-dependent hypothesis sets that we introduce. This bound admits as special cases both standard Rademacher complexity bounds and algorithm-dependent uniform stability bounds. We also illustrate the use of these learning bounds in the analysis of several scenarios.
Non-parametric goodness-of-fit testing procedures based on kernel Stein discrepancies (KSD) are promising approaches to validate general unnormalised distributions in various scenarios. Existing works have focused on studying optimal kernel choices to boost test performances. However, the Stein operators are generally non-unique, while different choices of Stein operators can also have considerable effect on the test performances. In this work, we propose a unifying framework, the generalised kernel Stein discrepancy (GKSD), to theoretically compare and interpret different Stein operators in performing the KSD-based goodness-of-fit tests. We derive explicitly that how the proposed GKSD framework generalises existing Stein operators and their corresponding tests. In addition, we show thatGKSD framework can be used as a guide to develop kernel-based non-parametric goodness-of-fit tests for complex new data scenarios, e.g. truncated distributions or compositional data. Experimental results demonstrate that the proposed tests control type-I error well and achieve higher test power than existing approaches, including the test based on maximum-mean-discrepancy (MMD).
In this paper, we consider data consisting of multiple networks, each comprised of a different edge set on a common set of nodes. Many models have been proposed for the analysis of such multi-view network data under the assumption that the data views are closely related. In this paper, we provide tools for evaluating this assumption. In particular, we ask: given two networks that each follow a stochastic block model, is there an association between the latent community memberships of the nodes in the two networks? To answer this question, we extend the stochastic block model for a single network view to the two-view setting, and develop a new hypothesis test for the null hypothesis that the latent community memberships in the two data views are independent. We apply our test to protein-protein interaction data from the HINT database (Das and Hint, 2012). We find evidence of a weak association between the latent community memberships of proteins defined with respect to binary interaction data and the latent community memberships of proteins defined with respect to co-complex association data. We also extend this proposal to the setting of a network with node covariates.
We introduce a general non-parametric independence test between right-censored survival times and covariates, which may be multivariate. Our test statistic has a dual interpretation, first in terms of the supremum of a potentially infinite collection of weight-indexed log-rank tests, with weight functions belonging to a reproducing kernel Hilbert space (RKHS) of functions; and second, as the norm of the difference of embeddings of certain finite measures into the RKHS, similar to the Hilbert-Schmidt Independence Criterion (HSIC) test-statistic. We study the asymptotic properties of the test, finding sufficient conditions to ensure our test correctly rejects the null hypothesis under any alternative. The test statistic can be computed straightforwardly, and the rejection threshold is obtained via an asymptotically consistent Wild Bootstrap procedure. Extensive simulations demonstrate that our testing procedure generally performs better than competing approaches in detecting complex non-linear dependence.