Do you want to publish a course? Click here

Properties of Eventually Positive Linear Input-Output Systems

100   0   0.0 ( 0 )
 Added by Aivar Sootla
 Publication date 2015
and research's language is English
 Authors Aivar Sootla




Ask ChatGPT about the research

In this paper, we consider the systems with trajectories originating in the nonnegative orthant becoming nonnegative after some finite time transient. First we consider dynamical systems (i.e., fully observable systems with no inputs), which we call eventually positive. We compute forward-invariant cones and Lyapunov functions for these systems. We then extend the notion of eventually positive systems to the input-output system case. Our extension is performed in such a manner, that some valuable properties of classical internally positive input-output systems are preserved. For example, their induced norms can be computed using linear programming and the energy functions have nonnegative derivatives.



rate research

Read More

We consider the effect of parametric uncertainty on properties of Linear Time Invariant systems. Traditional approaches to this problem determine the worst-case gains of the system over the uncertainty set. Whilst such approaches are computationally tractable, the upper bound obtained is not necessarily informative in terms of assessing the influence of the parameters on the system performance. We present theoretical results that lead to simple, convex algorithms producing parametric bounds on the $mathcal{L}_2$-induced input-to-output and state-to-output gains as a function of the uncertain parameters. These bounds provide quantitative information about how the uncertainty affects the system.
116 - Sergio Pequito , Soummya Kar , 2013
This paper addresses problems on the structural design of control systems taking explicitly into consideration the possible application to large-scale systems. We provide an efficient and unified framework to solve the following major minimization problems: (i) selection of the minimum number of manipulated/measured variables to achieve structural controllability/observability of the system, and (ii) selection of the minimum number of feedback interconnections between measured and manipulated variables such that the closed-loop system has no structurally fixed modes. Contrary to what would be expected, we show that it is possible to obtain a global solution for each of the aforementioned minimization problems using polynomial complexity algorithms in the number of the state variables of the system. In addition, we provide several new graph-theoretic characterizations of structural systems concepts, which, in turn, enable us to characterize all possible solutions to the above problems.
In this paper, an attack-resilient estimation algorithm is presented for linear discrete-time stochastic systems with state and input constraints. It is shown that the state estimation errors of the proposed estimation algorithm are practically exponentially stable.
This paper deals with the H2 suboptimal output synchronization problem for heterogeneous linear multi-agent systems. Given a multi-agent system with possibly distinct agents and an associated H2 cost functional, the aim is to design output feedback based protocols that guarantee the associated cost to be smaller than a given upper bound while the controlled network achieves output synchronization. A design method is provided to compute such protocols. For each agent, the computation of its two local control gains involves two Riccati inequalities, each of dimension equal to the state space dimension of the agent. A simulation example is provided to illustrate the performance of the proposed protocols.
This paper addresses the problem of positive consensus of directed multi-agent systems with observer-type output-feedback protocols. More specifically, directed graph is used to model the communication topology of the multi-agent system and linear matrix inequalities (LMIs) are used in the consensus analysis in this paper. Using positive systems theory and graph theory, a convex programming algorithm is developed to design appropriate protocols such that the multi-agent system is able to reach consensus with its state trajectory always remaining in the non-negative orthant. Finally, numerical simulations are given to illustrate the effectiveness of the derived theoretical results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا