Do you want to publish a course? Click here

Finite temperature phase diagram of trapped Fermi gases with population imbalance

143   0   0.0 ( 0 )
 Added by Wei Zhang
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a trapped Fermi gas with population imbalance at finite temperatures and map out the detailed phase diagram across a wide Feshbach resonance. We take the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state into consideration and minimize the thermodynamical potential to ensure stability. Under the local density approximation, we conclude that a stable LOFF state is present only on the BCS side of the Feshbach resonance, but not on the BEC side or at unitarity. Furthermore, even on the BCS side, a LOFF state is restricted at low temperatures and in a small region of the trap, which makes a direct observation of LOFF state a challenging task.



rate research

Read More

We present detailed numerical and analytical investigations of the nonequilibrium dynamics of spin-polarized ultracold Fermi gases following a sudden switching-on of the atom-atom pairing coupling strength. Within a time-dependent mean-field approach we show that on increasing the imbalance it takes longer for pairing to develop, the period of the nonlinear oscillations lengthens, and the maximum value of the pairing amplitude decreases. As expected, dynamical pairing is suppressed by the increase of the imbalance. Eventually, for a critical value of the imbalance the nonlinear oscillations do not even develop. Finally, we point out an interesting temperature-reentrant behavior of the exponent characterizing the initial instability.
We study population imbalanced Fermi mixtures under quasi-two-dimensional confinement at zero temperature. Using mean-field theory and the local-density approximation, we study the ground state configuration throughout the BEC-BCS crossover. We find the trapped system to be either fully normal or to consist of a superfluid core surrounded by a normal shell, which is itself either fully or partially polarized. Upon changing the trap imbalance, the trap configuration may undergo continuous transitions between the different ground states. Finally, we argue that thermal equilibration throughout the trap will be considerably slowed down at low temperatures when a superfluid phase is present.
We consider the problem of spin-triplet p-wave superfluid pairing with total spin projection $m_s=0$ in atomic Fermi gas across the Feshbach resonance. We allow for imbalanced populations and take into account the effects due to presence of a parabolic trapping potential. Within the mean-field approximation for the one- and two-channel pairing models we show that depending on the distance from the center of a trap at least two superfluid states will have the lowest energy. Superfluid shells which emerge in a trap may have two out of three angular components of the p-wave superfluid order parameter equal to zero.
134 - J. Kinnunen , L. M. Jensen , 2005
We consider density-imbalanced Fermi gases of atoms in the strongly interacting, i.e. unitarity, regime. The Bogoliubov-deGennes equations for a trapped superfluid are solved. They take into account the finite size of the system, as well as give rise to both phase separation and FFLO type oscillations in the order parameter. We show how radio-frequency spectroscopy reflects the phase separation, and can provide direct evidence of the FFLO-type oscillations via observing the nodes of the order parameter.
The pressure-temperature phase diagram of the heavy-electron superconductor URu2Si2 has been reinvestigated by ac-susceptibility and elastic neutron-scattering (NS) measurements performed on a small single-crystalline rod (2 mm in diameter, 6 mm in length) in a Cu-Be clamp-type high-pressure cell (P < 1.1 GPa). At ambient pressure, this sample shows the weakest antiferromagnetic (AF) Bragg reflections reported so far, corresponding to the volume-averaged staggered moment of mord ~ 0.011 mB/U. Under applied pressure, the AF scattering intensity exhibits a sharp increase at P ~ 0.7 GPa at low temperatures. The saturation value of the AF scattering intensity above 0.7 GPa corresponds to mord ~ 0.41 mB/U, which is in good agreement with that (~ 0.39 mB/U) observed above 1.5 GPa in our previous NS measurements. The superconductivity is dramatically suppressed by the evolution of AF phase, indicating that the superconducting state coexists only with the hidden order phase. The presence of parasitic ferro- and/or antiferromagnetic phases with transition temperatures T1star =120(5) K, T2star = 36(3) K and T3star = 16.5(5) K and their relationship to the low-T ordered phases are also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا