Do you want to publish a course? Click here

Spitzer Quasar and ULIRG Evolution Study (QUEST): II. The Spectral Energy Distributions of Palomar-Green Quasars

126   0   0.0 ( 0 )
 Added by Hagai Netzer
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

This is the second paper studying the QSOs in the spitzer QUEST sample. Previously we presented new PAH measurements and argued that most of the observed far infrared (FIR) radiation is due to star-forming activity. Here we present spectral energy distributions (SEDs) by supplementing our data with optical, NIR and FIR observations. We define two sub-groups of ``weak FIR and ``strong FIR QSOs, and a third group of FIR non-detections. Assuming a starburst origin for the FIR, we obtain ``intrinsic AGN SEDs by subtracting a starburst template from the mean SEDs. The resulting SEDs are remarkably similar for all groups. They show three distinct peaks corresponding to two silicate emission features and a 3mic bump that we interpret as the signature of the hottest AGN dust. They also display drops beyond 20mic that we interpret as the signature of the minimum temperature (about 200K) dust. This component must be optically thin to explain the silicate emission and the slope of the long wavelength continuum. We discuss the merits of an alternative model where most of the FIR emission is due to AGN heating. Such models are unlikely to explain the properties of our QSOs but they cannot be ruled out for more luminous objects. We also find correlations between the luminosity at 5100A and two infrared starburst indicators: L(60mic) and L(PAH 7.7mic). The correlation of L(5100A) with L(60mic) can be used to measure the relative growth rates and lifetimes of the black hole and the new stars.



rate research

Read More

We report the results from a comprehensive study of 74 ultraluminous infrared galaxies (ULIRGs) and 34 Palomar-Green (PG) quasars within z ~ 0.3$ observed with the Spitzer Infrared Spectrograph (IRS). The contribution of nuclear activity to the bolometric luminosity in these systems is quantified using six independent methods that span a range in wavelength and give consistent results within ~ +/-10-15% on average. The average derived AGN contribution in ULIRGs is ~35-40%, ranging from ~15-35% among cool (f_25/f_60 =< 0.2) optically classified HII-like and LINER ULIRGs to ~50 and ~75% among warm Seyfert 2 and Seyfert 1 ULIRGs, respectively. This number exceeds ~80% in PG QSOs. ULIRGs fall in one of three distinct AGN classes: (1) objects with small extinctions and large PAH equivalent widths are highly starburst-dominated; (2) systems with large extinctions and modest PAH equivalent widths have larger AGN contributions, but still tend to be starburst-dominated; and (3) ULIRGs with both small extinctions and small PAH equivalent widths host AGN that are at least as powerful as the starbursts. The AGN contributions in class 2 ULIRGs are more uncertain than in the other objects, and we cannot formally rule out the possibility that these objects represent a physically distinct type of ULIRGs. A morphological trend is seen along the sequence (1)-(2)-(3), in general agreement with the standard ULIRG - QSO evolution scenario and suggestive of a broad peak in extinction during the intermediate stages of merger evolution. However, the scatter in this sequence, implies that black hole accretion, in addition to depending on the merger phase, also has a strong chaotic/random component, as in local AGN. (abridged)
This paper addresses the origin of the far-infrared (FIR) continuum of QSOs, based on the Quasar and ULIRG Evolution Study (QUEST) of nearby QSOs and ULIRGs using observations with the Spitzer Space Telescope. For 27 Palomar-Green QSOs at z <~ 0.3, we derive luminosities of diagnostic lines ([NeII]12.8um, [NeV]14.3um, [OIV]25.9um) and emission features (PAH7.7um emission which is related to star formation), as well as continuum luminosities over a range of mid- to far-infrared wavelengths between 6 and 60um. We detect star-formation related PAH emission in 11/26 QSOs and fine-structure line emission in all of them, often in multiple lines. The detection of PAHs in the average spectrum of sources which lack individual PAH detections provides further evidence for the widespread presence of PAHs in QSOs. Similar PAH/FIR and [NeII]/FIR ratios are found in QSOs and in starburst-dominated ULIRGs and lower luminosity starbursts. We conclude that the typical QSO in our sample has at least 30% but likely most of the far-infrared luminosity (~ 10^(10...12)Lsun) arising from star formation, with a tendency for larger star formation contribution at the largest FIR luminosities. In the QSO sample, we find correlations between most of the quantities studied including combinations of AGN tracers and starburst tracers. The common scaling of AGN and starburst luminosities (and fluxes) is evidence for a starburst-AGN connection in luminous AGN. Strong correlations of far-infrared continuum and starburst related quantities (PAH, low excitation [NeII]) offer additional support for the starburst origin of far-infrared emission.
117 - Sebastian Jester 2005
We investigate the extent to which the Palomar-Green (PG) Bright Quasar Survey (BQS) is complete and representative of the general quasar population by comparing with imaging and spectroscopy from the Sloan Digital Sky Survey. A comparison of SDSS and PG photometry of both stars and quasars reveals the need to apply a color and magnitude recalibration to the PG data. Using the SDSS photometric catalog, we define the PGs parent sample of objects that are not main-sequence stars and simulate the selection of objects from this parent sample using the PG photometric criteria and errors. This simulation shows that the effective U-B cut in the PG survey is U-B < -0.71 (rather than the intended U-B < -0.44), implying a color-related incompleteness. As the color distribution of bright quasars peaks near U-B=-0.7 and the 2-sigma error in U-B is comparable to the full width of the color distribution of quasars, the color incompleteness of the BQS is approximately 50% and essentially random with respect to U-B color for z<0.5. There is, however, a bias against bright quasars at 0.5 < z < 1, which is induced by the color-redshift relation of quasars (although quasars at z>0.5 are inherently rare in bright surveys in any case). We find no evidence for any other systematic incompleteness when comparing the distributions in color, redshift, and FIRST radio properties of the BQS and a BQS-like subsample of the SDSS quasar sample. However, the application of a bright magnitude limit biases the BQS toward the inclusion of objects which are blue in g-i, in particular compared to the full range of g-i colors found among the i-band limited SDSS quasars, and even at i-band magnitudes comparable to those of the BQS objects.
We present an analysis of the mid-infrared (MIR) and optical properties of type 1 (broad-line) quasars detected by the Spitzer Space Telescope. The MIR color-redshift relation is characterized to z=3, with predictions to z=7. We demonstrate how combining MIR and optical colors can yield even more efficient selection of active galactic nuclei (AGN) than MIR or optical colors alone. Composite spectral energy distributions (SEDs) are constructed for 259 quasars with both Sloan Digital Sky Survey and Spitzer photometry, supplemented by near-IR, GALEX, VLA and ROSAT data where available. We discuss how the spectral diversity of quasars influences the determination of bolometric luminosities and accretion rates; assuming the mean SED can lead to errors as large as a factor of 2 for individual quasars. Finally, we show that careful consideration of the shape of the mean quasar SED and its redshift dependence leads to a lower estimate of the fraction of reddened/obscured AGNs missed by optical surveys as compared to estimates derived from a single mean MIR to optical flux ratio.
We present a new analysis of the PG quasar sample based on Spitzer and Herschel observations. (I) Assuming PAH-based star formation luminosities (L_SF) similar to Symeonidis et al. (2016, S16), we find mean and median intrinsic AGN spectral energy distributions (SEDs). These, in the FIR, appear hotter and significantly less luminous than the S16 mean intrinsic AGN SED. The differences are mostly due to our normalization of the individual SEDs, that properly accounts for a small number of very FIR-luminous quasars. Our median, PAH-based SED represents ~ 6% increase on the 1-243 micron luminosity of the extended Mor & Netzer (2012, EM12) torus SED, while S16 find a significantly larger difference. It requires large-scale dust with T ~ 20 -- 30 K which, if optically thin and heated by the AGN, would be outside the host galaxy. (II) We also explore the black hole and stellar mass growths, using L_SF estimates from fitting Herschel/PACS observations after subtracting the EM12 torus contribution. We use rough estimates of stellar mass, based on scaling relations, to divide our sample into groups: on, below and above the star formation main sequence (SFMS). Objects on the SFMS show a strong correlation between star formation luminosity and AGN bolometric luminosity, with a logarithmic slope of ~ 0.7. Finally we derive the relative duty cycles of this and another sample of very luminous AGN at z = 2 -- 3.5. Large differences in this quantity indicate different evolutionary pathways for these two populations characterised by significantly different black hole masses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا