No Arabic abstract
This paper addresses the origin of the far-infrared (FIR) continuum of QSOs, based on the Quasar and ULIRG Evolution Study (QUEST) of nearby QSOs and ULIRGs using observations with the Spitzer Space Telescope. For 27 Palomar-Green QSOs at z <~ 0.3, we derive luminosities of diagnostic lines ([NeII]12.8um, [NeV]14.3um, [OIV]25.9um) and emission features (PAH7.7um emission which is related to star formation), as well as continuum luminosities over a range of mid- to far-infrared wavelengths between 6 and 60um. We detect star-formation related PAH emission in 11/26 QSOs and fine-structure line emission in all of them, often in multiple lines. The detection of PAHs in the average spectrum of sources which lack individual PAH detections provides further evidence for the widespread presence of PAHs in QSOs. Similar PAH/FIR and [NeII]/FIR ratios are found in QSOs and in starburst-dominated ULIRGs and lower luminosity starbursts. We conclude that the typical QSO in our sample has at least 30% but likely most of the far-infrared luminosity (~ 10^(10...12)Lsun) arising from star formation, with a tendency for larger star formation contribution at the largest FIR luminosities. In the QSO sample, we find correlations between most of the quantities studied including combinations of AGN tracers and starburst tracers. The common scaling of AGN and starburst luminosities (and fluxes) is evidence for a starburst-AGN connection in luminous AGN. Strong correlations of far-infrared continuum and starburst related quantities (PAH, low excitation [NeII]) offer additional support for the starburst origin of far-infrared emission.
This is the second paper studying the QSOs in the spitzer QUEST sample. Previously we presented new PAH measurements and argued that most of the observed far infrared (FIR) radiation is due to star-forming activity. Here we present spectral energy distributions (SEDs) by supplementing our data with optical, NIR and FIR observations. We define two sub-groups of ``weak FIR and ``strong FIR QSOs, and a third group of FIR non-detections. Assuming a starburst origin for the FIR, we obtain ``intrinsic AGN SEDs by subtracting a starburst template from the mean SEDs. The resulting SEDs are remarkably similar for all groups. They show three distinct peaks corresponding to two silicate emission features and a 3mic bump that we interpret as the signature of the hottest AGN dust. They also display drops beyond 20mic that we interpret as the signature of the minimum temperature (about 200K) dust. This component must be optically thin to explain the silicate emission and the slope of the long wavelength continuum. We discuss the merits of an alternative model where most of the FIR emission is due to AGN heating. Such models are unlikely to explain the properties of our QSOs but they cannot be ruled out for more luminous objects. We also find correlations between the luminosity at 5100A and two infrared starburst indicators: L(60mic) and L(PAH 7.7mic). The correlation of L(5100A) with L(60mic) can be used to measure the relative growth rates and lifetimes of the black hole and the new stars.
We report the results from a comprehensive study of 74 ultraluminous infrared galaxies (ULIRGs) and 34 Palomar-Green (PG) quasars within z ~ 0.3$ observed with the Spitzer Infrared Spectrograph (IRS). The contribution of nuclear activity to the bolometric luminosity in these systems is quantified using six independent methods that span a range in wavelength and give consistent results within ~ +/-10-15% on average. The average derived AGN contribution in ULIRGs is ~35-40%, ranging from ~15-35% among cool (f_25/f_60 =< 0.2) optically classified HII-like and LINER ULIRGs to ~50 and ~75% among warm Seyfert 2 and Seyfert 1 ULIRGs, respectively. This number exceeds ~80% in PG QSOs. ULIRGs fall in one of three distinct AGN classes: (1) objects with small extinctions and large PAH equivalent widths are highly starburst-dominated; (2) systems with large extinctions and modest PAH equivalent widths have larger AGN contributions, but still tend to be starburst-dominated; and (3) ULIRGs with both small extinctions and small PAH equivalent widths host AGN that are at least as powerful as the starbursts. The AGN contributions in class 2 ULIRGs are more uncertain than in the other objects, and we cannot formally rule out the possibility that these objects represent a physically distinct type of ULIRGs. A morphological trend is seen along the sequence (1)-(2)-(3), in general agreement with the standard ULIRG - QSO evolution scenario and suggestive of a broad peak in extinction during the intermediate stages of merger evolution. However, the scatter in this sequence, implies that black hole accretion, in addition to depending on the merger phase, also has a strong chaotic/random component, as in local AGN. (abridged)
We present Spitzer MIR spectra of 25 FR-I radio galaxies and investigate the nature of their MIR continuum emission. MIR spectra of star-forming galaxies and quiescent elliptical galaxies are used to identify host galaxy contributions while radio/optical core data are used to isolate the nuclear non-thermal emission. Out of the 15 sources with detected optical compact cores, four sources are dominated by emission related to the host galaxy. Another four sources show signs of warm, nuclear dust emission: 3C15, 3C84, 3C270, and NGC 6251. It is likley that these warm dust sources result from hidden AGN of optical spectral type 1. The MIR spectra of seven sources are dominated by synchrotron emission, with no significant component of nuclear dust emission. In parabolic SED fits of the non-thermal cores FR-Is tend to have lower peak frequencies and stronger curvature than blazars. This is roughly consistent with the common picture in which the core emission in FR-Is is less strongly beamed than in blazars.
ISO provides a key new far-infrared window through which to observe the multi-wavelength spectral energy distributions (SEDs) of quasars and active galactic nuclei (AGN). It allows us, for the first time, to observe a substantial fraction of the quasar population in the far-IR, and to obtain simultaneous, multi-wavelength observations from 5--200 microns. With these data we can study the behavior of the IR continuum in comparison with expectations from competing thermal and non-thermal models. A key to determining which mechanism dominates, is the measurement of the peak wavelength of the emission and the shape of the far-IR--mm turnover. Turnovers which are steeper than frequency^2.5 indicate thermal dust emission in the far-IR. Preliminary results from our ISO data show broad, fairly smooth, IR continuum emission with far-IR turnovers generally too steep to be explained by non-thermal synchrotron emission. Assuming thermal emission throughout leads to a wide inferred temperature range of 50-1000 K. The hotter material, often called the AGN component, probably originates in dust close to and heated by the central source, e.g. the ubiquitous molecular torus. The cooler emission is too strong to be due purely to cool, host galaxy dust, and so indicates either the presence of a starburst in addition to the AGN or AGN-heated dust covering a wider range of temperatures than present in the standard, optically thick torus models.
We present new observational determination of the evolution of the rest-frame 70 and 160 micron and total infrared (TIR) galaxy luminosity functions (LFs) using 70 micron data from the Spitzer Wide-area Infrared Extragalactic Legacy Survey (SWIRE). The LFs were constructed for sources with spectroscopic redshifts only in the XMM-LSS and Lockman Hole fields from the SWIRE photometric redshift catalogue. The 70 micron and TIR LFs were constructed in the redshift range 0<z<1.2 and the 160 micron LF was constructed in the redshift range 0<z<0.5 using a parametric Bayesian and the vmax methods. We assume in our models, that the faint-end power-law index of the LF does not evolve with redshifts. We find the the double power-law model is a better representation of the IR LF than the more commonly used power-law and Gaussian model. We model the evolution of the FIR LFs as a function of redshift where where the characteristic luminosity, $L^ast$ evolve as $propto(1+z)^{alpha_textsc{l}}$. The rest-frame 70 micron LF shows a strong luminosity evolution out to z=1.2 with alpha_l=3.41^{+0.18}_{-0.25}. The rest-frame 160 micron LF also showed rapid luminosity evolution with alpha_l=5.53^{+0.28}_{-0.23} out to z=0.5. The rate of evolution in luminosity is consistent with values estimated from previous studies using data from IRAS, ISO and Spitzer. The TIR LF evolves in luminosity with alpha_l=3.82^{+0.28}_{-0.16} which is in agreement with previous results from Spitzer 24 micron which find strong luminosity evolution. By integrating the LF we calculated the co-moving IR luminosity density out to z=1.2, which confirm the rapid evolution in number density of LIRGs and ULIRGs which contribute ~68^{+10}_{-07} % to the co-moving star formation rate density at z=1.2. Our results based on 70 micron data confirms that the bulk of the star formation at z=1 takes place in dust obscured objects.