Do you want to publish a course? Click here

Revisiting cosmological bounds on radiative neutrino lifetime

122   0   0.0 ( 0 )
 Publication date 2007
  fields Physics
and research's language is English
 Authors A. Mirizzi




Ask ChatGPT about the research

Neutrino oscillation experiments and direct bounds on absolute masses constrain neutrino mass differences to fall into the microwave energy range, for most of the allowed parameter space. As a consequence of these recent phenomenological advances, older constraints on radiative neutrino decays based on diffuse background radiations and assuming strongly hierarchical masses in the eV range are now outdated. We thus derive new bounds on the radiative neutrino lifetime using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of Cosmic Background Explorer. The lower bound on the lifetime is between a few x 10^19 s and 5 x 10^20 s, depending on the neutrino mass ordering and on the absolute mass scale. However, due to phase space limitations, the upper bound in terms of the effective magnetic moment mediating the decay is not better than ~ 10^-8 Bohr magnetons. We also comment about possible improvements of these limits, by means of recent diffuse infrared photon background data. We compare these bounds with pre-existing limits coming from laboratory or astrophysical arguments. We emphasize the complementarity of our results with others available in the literature.



rate research

Read More

At present, the strongest upper limit on $sum m_{ u}$, the sum of neutrino masses, is from cosmological measurements. However, this bound assumes that the neutrinos are stable on cosmological timescales, and is not valid if the neutrino lifetime is less than the age of the universe. In this paper, we explore the cosmological signals of theories in which the neutrinos decay into invisible dark radiation on timescales of order the age of the universe, and determine the bound on the sum of neutrino masses in this scenario. We focus on the case in which the neutrinos decay after becoming non-relativistic. We derive the Boltzmann equations that govern the cosmological evolution of density perturbations in the case of unstable neutrinos, and solve them numerically to determine the effects on the matter power spectrum and lensing of the cosmic microwave background. We find that the results admit a simple analytic understanding. We then use these results to perform a Monte Carlo analysis based on the current data to determine the limit on the sum of neutrino masses as a function of the neutrino lifetime. We show that in the case of decaying neutrinos, values of $sum m_{ u}$ as large as 0.9 eV are still allowed by the data. Our results have important implications for laboratory experiments that have been designed to detect neutrino masses, such as KATRIN and KamLAND-ZEN.
We consider the phenomenological implications of the violation of the Pauli exclusion principle for neutrinos, focusing on cosmological observables such as the spectrum of Cosmic Microwave Background anisotropies, Baryon Acoustic Oscillations and the primordial abundances of light elements. Neutrinos that behave (at least partly) as bosonic particles have a modified equilibrium distribution function that implies a different influence on the evolution of the Universe that, in the case of massive neutrinos, can not be simply parametrized by a change in the effective number of neutrinos. Our results show that, despite the precision of the available cosmological data, only very weak bounds can be obtained on neutrino statistics, disfavouring a more bosonic behaviour at less than $2sigma$.
We present here up-to-date neutrino mass limits exploiting the most recent cosmological data sets. By making use of the Cosmic Microwave Background temperature fluctuation and polarization measurements, Supernovae Ia luminosity distances, Baryon Acoustic Oscillation observations and determinations of the growth rate parameter, we are able to set the most constraining bound to date, $sum m_ u<0.09$ eV at $95%$~CL. This very tight limit is obtained without the assumption of any prior on the value of the Hubble constant and highly compromises the viability of the inverted mass ordering as the underlying neutrino mass pattern in nature. The results obtained here further strengthen the case for very large multitracer spectroscopic surveys as unique laboratories for cosmological relics, such as neutrinos: that would be the case of the Dark Energy Spectroscopic Instrument (DESI) survey and of the Euclid mission.
We revisit the current experimental bounds on fourth-generation Majorana neutrino masses, including the effects of right handed neutrinos. Current bounds from LEPII are significantly altered by a global analysis. We show that the current bounds on fourth generation neutrinos decaying to eW and mu W can be reduced to about 80 GeV (from the current bound of 90 GeV), while a neutrino decaying to tau W can be as light as 62.1 GeV. The weakened bound opens up a neutrino decay channel for intermediate mass Higgs, and interesting multi-particle final states for Higgs and fourth generation lepton decays.
In this paper, we summarize the existing methods of solving the evolution equation of the leading-twist $B$-meson LCDA. Then, in the Mellin space, we derive a factorization formula with next-to-leading-logarithmic (NLL) resummation for the form factors $F_{A,V}$ in the $B to gamma ell u$ decay at leading power in $Lambda/m_b$. Furthermore, we investigate the power suppressed local contributions, factorizable non-local contributions (which are suppressed by $1/E_gamma$ and $1/m_b$), and soft contributions to the form factors. In the numerical analysis, which employs the two-loop-level hard function and the jet function, we find that both the resummation effect and the power corrections can sizably decrease the form factors. Finally, the integrated branching ratios are also calculated for comparison with future experimental data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا