Do you want to publish a course? Click here

Cosmological Limits on the Neutrino Mass and Lifetime

65   0   0.0 ( 0 )
 Added by Peizhi Du
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

At present, the strongest upper limit on $sum m_{ u}$, the sum of neutrino masses, is from cosmological measurements. However, this bound assumes that the neutrinos are stable on cosmological timescales, and is not valid if the neutrino lifetime is less than the age of the universe. In this paper, we explore the cosmological signals of theories in which the neutrinos decay into invisible dark radiation on timescales of order the age of the universe, and determine the bound on the sum of neutrino masses in this scenario. We focus on the case in which the neutrinos decay after becoming non-relativistic. We derive the Boltzmann equations that govern the cosmological evolution of density perturbations in the case of unstable neutrinos, and solve them numerically to determine the effects on the matter power spectrum and lensing of the cosmic microwave background. We find that the results admit a simple analytic understanding. We then use these results to perform a Monte Carlo analysis based on the current data to determine the limit on the sum of neutrino masses as a function of the neutrino lifetime. We show that in the case of decaying neutrinos, values of $sum m_{ u}$ as large as 0.9 eV are still allowed by the data. Our results have important implications for laboratory experiments that have been designed to detect neutrino masses, such as KATRIN and KamLAND-ZEN.



rate research

Read More

114 - A. Mirizzi 2007
Neutrino oscillation experiments and direct bounds on absolute masses constrain neutrino mass differences to fall into the microwave energy range, for most of the allowed parameter space. As a consequence of these recent phenomenological advances, older constraints on radiative neutrino decays based on diffuse background radiations and assuming strongly hierarchical masses in the eV range are now outdated. We thus derive new bounds on the radiative neutrino lifetime using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of Cosmic Background Explorer. The lower bound on the lifetime is between a few x 10^19 s and 5 x 10^20 s, depending on the neutrino mass ordering and on the absolute mass scale. However, due to phase space limitations, the upper bound in terms of the effective magnetic moment mediating the decay is not better than ~ 10^-8 Bohr magnetons. We also comment about possible improvements of these limits, by means of recent diffuse infrared photon background data. We compare these bounds with pre-existing limits coming from laboratory or astrophysical arguments. We emphasize the complementarity of our results with others available in the literature.
291 - L. Baudis , A. Dietz , G. Heusser 1999
The Heidelberg-Moscow experiment gives the most stringent limit on the Majorana neutrino mass. After 24 kg yr of data with pulse shape measurements, we set a lower limit on the half-life of the neutrinoless double beta decay in 76Ge of T_1/2 > 5.7 * 10^{25} yr at 90% C.L., thus excluding an effective Majorana neutrino mass greater than 0.2 eV. This allows to set strong constraints on degenerate neutrino mass models.
Invisible neutrino decay modes are difficult to target at laboratory experiments, and current bounds on such decays from solar neutrino and neutrino oscillation experiments are somewhat weak. It has been known for some time that Cosmology can serve as a powerful probe of invisible neutrino decays. In this work, we show that in order for Big Bang Nucleosynthesis to be successful, the invisible neutrino decay lifetime is bounded to be $tau_ u > 10^{-3},text{s}$ at 95% CL. We revisit Cosmic Microwave Background constraints on invisible neutrino decays, and by using Planck2018 observations we find the following bound on the neutrino lifetime: $tau_ u > (1.3-0.3)times 10^{9},text{s} , left({m_ u}/{ 0.05,text{eV} }right)^3$ at $95%$ CL. We show that this bound is robust to modifications of the cosmological model, in particular that it is independent of the presence of dark radiation. We find that lifetimes relevant for Supernova observations ($tau_ u sim 10^{5},text{s}, left({m_ u}/{ 0.05,text{eV} }right)^3$) are disfavoured at more than $5,sigma$ with respect to $Lambda$CDM given the latest Planck CMB observations. Finally, we show that when including high-$ell$ Planck polarization data, neutrino lifetimes $tau_ u = (2-16)times 10^{9},text{s} , left({m_ u}/{ 0.05,text{eV} }right)^3$ are mildly preferred -- with a 1-2 $sigma$ significance -- over neutrinos being stable.
The long baseline between the Earth and the Sun makes solar neutrinos an excellent test beam for exploring possible neutrino decay. The signature of such decay would be an energy-dependent distortion of the traditional survival probability which can be fit for using well-developed and high precision analysis methods. Here a model including neutrino decay is fit to all three phases of $^8$B solar neutrino data taken by the Sudbury Neutrino Observatory. This fit constrains the lifetime of neutrino mass state $ u_2$ to be ${>8.08times10^{-5}}$ s/eV at $90%$ confidence. An analysis combining this SNO result with those from other solar neutrino experiments results in a combined limit for the lifetime of mass state $ u_2$ of ${>1.04times10^{-3}}$ s/eV at $99%$ confidence.
Searches for Dark Matter (DM) particles with indirect detection techniques have reached important milestones with the precise measurements of the anti-proton and gamma-ray spectra, notably by the PAMELA and FERMI-LAT experiments. While the gamma-ray results have been used to test the thermal Dark Matter hypothesis and constrain the Dark Matter annihilation cross section into Standard Model (SM) particles, the anti-proton flux measured by the PAMELA experiment remains relatively unexploited. Here we show that the latter can be used to set a constraint on the neutralino-chargino mass difference. To illustrate our point we use a Supersymmetric model in which the gauginos are light, the sfermions are heavy and the Lightest Supersymmetric Particle (LSP) is the neutralino. In this framework the W^+ W^- production is expected to be significant, thus leading to large anti-proton and gamma-ray fluxes. After determining a generic limit on the Dark Matter pair annihilation cross section into W^+ W^- from the anti-proton data only, we show that one can constrain scenarios in which the neutralino-chargino mass difference is as large as ~ 20 GeV for a mixed neutralino (and intermediate choices of the anti-proton propagation scheme). This result is consistent with the limit obtained by using the FERMI-LAT data. As a result, we can safely rule out the pure wino neutralino hypothesis if it is lighter than 450 GeV and constitutes all the Dark Matter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا