Do you want to publish a course? Click here

Cosmological bounds on neutrino statistics

77   0   0.0 ( 0 )
 Added by Stefano Gariazzo
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the phenomenological implications of the violation of the Pauli exclusion principle for neutrinos, focusing on cosmological observables such as the spectrum of Cosmic Microwave Background anisotropies, Baryon Acoustic Oscillations and the primordial abundances of light elements. Neutrinos that behave (at least partly) as bosonic particles have a modified equilibrium distribution function that implies a different influence on the evolution of the Universe that, in the case of massive neutrinos, can not be simply parametrized by a change in the effective number of neutrinos. Our results show that, despite the precision of the available cosmological data, only very weak bounds can be obtained on neutrino statistics, disfavouring a more bosonic behaviour at less than $2sigma$.



rate research

Read More

We present here up-to-date neutrino mass limits exploiting the most recent cosmological data sets. By making use of the Cosmic Microwave Background temperature fluctuation and polarization measurements, Supernovae Ia luminosity distances, Baryon Acoustic Oscillation observations and determinations of the growth rate parameter, we are able to set the most constraining bound to date, $sum m_ u<0.09$ eV at $95%$~CL. This very tight limit is obtained without the assumption of any prior on the value of the Hubble constant and highly compromises the viability of the inverted mass ordering as the underlying neutrino mass pattern in nature. The results obtained here further strengthen the case for very large multitracer spectroscopic surveys as unique laboratories for cosmological relics, such as neutrinos: that would be the case of the Dark Energy Spectroscopic Instrument (DESI) survey and of the Euclid mission.
We present strong bounds on the sum of three active neutrino masses ($sum m_{ u}$) in various cosmological models. We use the following baseline datasets: CMB temperature data from Planck 2015, BAO measurements from SDSS-III BOSS DR12, the newly released SNe Ia dataset from Pantheon Sample, and a prior on the optical depth to reionization from 2016 Planck Intermediate results. We constrain cosmological parameters in $Lambda CDM$ model with 3 massive active neutrinos. For this $Lambda CDM+sum m_{ u}$ model we find a upper bound of $sum m_{ u} <$ 0.152 eV at 95$%$ C.L. Adding the high-$l$ polarization data from Planck strengthens this bound to $sum m_{ u} <$ 0.118 eV, which is very close to the minimum required mass of $sum m_{ u} simeq$ 0.1 eV for inverted hierarchy. This bound is reduced to $sum m_{ u} <$ 0.110 eV when we also vary r, the tensor to scalar ratio ($Lambda CDM+r+sum m_{ u}$ model), and add an additional dataset, BK14, the latest data released from the Bicep-Keck collaboration. This bound is further reduced to $sum m_{ u} <$ 0.101 eV in a cosmology with non-phantom dynamical dark energy ($w_0 w_a CDM+sum m_{ u}$ model with $w(z)geq -1$ for all $z$). Considering the $w_0 w_a CDM+r+sum m_{ u}$ model and adding the BK14 data again, the bound can be even further reduced to $sum m_{ u} <$ 0.093 eV. For the $w_0 w_a CDM+sum m_{ u}$ model without any constraint on $w(z)$, the bounds however relax to $sum m_{ u} <$ 0.276 eV. Adding a prior on the Hubble constant ($H_0 = 73.24pm 1.74$ km/sec/Mpc) from Hubble Space Telescope (HST), the above mentioned bounds further improve to $sum m_{ u} <$ 0.117 eV, 0.091 eV, 0.085 eV, 0.082 eV, 0.078 eV and 0.247 eV respectively. This substantial improvement is mostly driven by a more than 3$sigma$ tension between Planck 2015 and HST measurements of $H_0$ and should be taken cautiously. (abstract abridged)
Axions, if realized in nature, can be copiously produced in the early universe via thermal processes, contributing to the mass-energy density of thermal hot relics. In light of the most recent cosmological observations, we analyze two different thermal processes within a realistic mixed hot-dark-matter scenario which includes also massive neutrinos. Considering the axion-gluon thermalization channel we derive our most constraining bounds on the hot relic masses $m_a < 7.46$ eV and $sum m_ u< 0.114$ eV both at 95 per cent CL; while studying the axion-pion scattering, without assuming any specific model for the axion-pion interactions and remaining in the range of validity of the chiral perturbation theory, our most constraining bounds are improved to $m_a<0.91$ eV and $sum m_ u< 0.105$ eV, both at 95 per cent CL. Interestingly, in both cases, the total neutrino mass lies very close to the inverted neutrino mass ordering prediction. If future terrestrial double beta decay and/or long baseline neutrino experiments find that the nature mass ordering is the inverted one, this could rule out a wide region in the currently allowed thermal axion window. Our results therefore strongly support multi-messenger searches of axions and neutrino properties, together with joint analyses of their expected sensitivities.
If active neutrinos undergo non-standard (`secret) interactions (NS$ u$I) the cosmological evolution of the neutrino fluid might be altered, leaving an imprint in cosmological observables. We use the latest publicly available CMB data from Planck to constrain NS$ u$I inducing $ u- u$ scattering, under the assumption that the mediator $phi$ of the secret interaction is very light. We find that the effective coupling constant of the interaction, $g_mathrm{eff}^4 equiv langle sigma vrangle T_ u^2$, is constrained at $< 2.35times10^{-27}$ (95% credible interval), which stregthens to $g_mathrm{eff}^4 < 1.64times10^{-27}$ when Planck non-baseline small-scale polarization is considered. Our findings imply that after decoupling at $Tsimeq 1$ MeV, cosmic neutrinos are free streaming at redshifts $z>3800$, or $z>2300$ if small-scale polarization is included. These bounds are only marginally improved when data from geometrical expansion probes are included in the analysis to complement Planck. We also find that the tensions between CMB and low-redshift measurements of the expansion rate $H_0$ and the amplitude of matter fluctuations $sigma_8$ are not significantly reduced. Our results are independent on the underlying particle physics model as long as $phi$ is very light. Considering a model with Majorana neutrinos and a pseudoscalar mediator we find that the coupling constant $g$ of the secret interaction is constrained at $lesssim 7times 10^{-7}$. By further assuming that the pseudoscalar interaction comes from a dynamical realization of the see-saw mechanism, as in Majoron models, we can bound the scale of lepton number breaking $v_sigma$ as $gtrsim (1.4times 10^{6})m_ u$.
113 - A. Mirizzi 2007
Neutrino oscillation experiments and direct bounds on absolute masses constrain neutrino mass differences to fall into the microwave energy range, for most of the allowed parameter space. As a consequence of these recent phenomenological advances, older constraints on radiative neutrino decays based on diffuse background radiations and assuming strongly hierarchical masses in the eV range are now outdated. We thus derive new bounds on the radiative neutrino lifetime using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of Cosmic Background Explorer. The lower bound on the lifetime is between a few x 10^19 s and 5 x 10^20 s, depending on the neutrino mass ordering and on the absolute mass scale. However, due to phase space limitations, the upper bound in terms of the effective magnetic moment mediating the decay is not better than ~ 10^-8 Bohr magnetons. We also comment about possible improvements of these limits, by means of recent diffuse infrared photon background data. We compare these bounds with pre-existing limits coming from laboratory or astrophysical arguments. We emphasize the complementarity of our results with others available in the literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا