No Arabic abstract
We derive a new class of exact time dependent solutions in a warped six dimensional supergravity model. Under the assumptions we make for the form of the underlying moduli fields, we show that the only consistent time dependent solutions lead to all six dimensions evolving in time, implying the eventual decompactification or collapse of the extra dimensions. We also show how the dynamics affects the quantization of the deficit angle.
We study the regularization of the codimension-2 singularities in six-dimensional Einstein-Maxwell axisymmetric models with warping. These singularities are replaced by codimension-1 branes of a ring form, situated around the axis of symmetry. We assume that there is a brane scalar field with Goldstone dynamics, which is known to generate a brane energy momentum tensor of a particular structure necessary for the above regularization to be successful. We study these compactifications in both a non-supersymmetric and a supersymmetric setting. We see that in the non-supersymmetric case, there is a restriction to the admissible warpings and furthermore to the quantum numbers of the bulk gauge field and the brane scalar field. On the contrary, in the supersymmetric case, the warping can be arbitrary.
We construct the first rotating string solution in 6-dimensional Einstein-Gauss-Bonnet supergravity, carrying both electric and magnetic charges. By embedding the known rotating string solution of the 2-derivative theory into 6-dimensional off-shell supergravity, the Killing spinors associated with the underlying supersymmetry can be made off-shell and are universal to all off-shell supergravity models based on the same field content. The near-horizon geometry is S^3 fibred over the extremal BTZ black hole, locally isomorphic to AdS_3*S^3. We compute the higher-derivative corrections to the Brown-Henneaux central charges in a particular R+R^2 model resulting from K3 compactification of type IIA string theory.
We find four-dimensional de Sitter compactifications of type IIA supergravity by directly solving the ten-dimensional equations of motion. In the simplest examples, the internal space has the topology of a circle times an Einstein manifold of negative curvature. An orientifold acts on the circle with two fixed loci, at which an O8$_-$ and an O8$_+$ plane sit. These orientifold planes are fully backreacted and localized. While the solutions are numerical, the charge and tension of the orientifold planes can be verified analytically. Our solutions have moduli at tree level and can be made parametrically weakly-coupled and weakly-curved. Their fate in string theory depends on quantum corrections.
We describe the supersymmetric completion of several curvature-squared invariants for ${cal N}=(1,0)$ supergravity in six dimensions. The construction of the invariants is based on a close interplay between superconformal tensor calculus and recently developed superspace techniques to study general off-shell supergravity-matter couplings. In the case of minimal off-shell Poincare supergravity based on the dilaton-Weyl multiplet coupled to a linear multiplet as a conformal compensator, we describe off-shell supersymmetric completions for all the three possible purely gravitational curvature-squared terms in six dimensions: Riemann, Ricci, and scalar curvature squared. A linear combination of these invariants describes the off-shell completion of the Gauss-Bonnet term, recently presented in arXiv:1706.09330. We study properties of the Einstein-Gauss-Bonnet supergravity, which plays a central role in the effective low-energy description of $alpha^prime$-corrected string theory compactified to six dimensions, including a detailed analysis of the spectrum about the ${rm AdS}_3times {rm S}^3$ solution. We also present a novel locally superconformal invariant based on a higher-derivative action for the linear multiplet. This invariant, which includes gravitational curvature-squared terms, can be defined both coupled to the standard-Weyl or dilaton-Weyl multiplet for conformal supergravity. In the first case, we show how the addition of this invariant to the supersymmetric Einstein-Hilbert term leads to a dynamically generated cosmological constant and non-supersymmetric (A)dS$_6$ solutions. In the dilaton-Weyl multiplet, the new off-shell invariant includes Ricci and scalar curvature-squared terms and possesses a nontrivial dependence on the dilaton field.
In the N=1 four-dimensional new-minimal supergravity framework, we supersymmetrise the coupling of the scalar kinetic term to the Einstein tensor. This coupling, although introduces a non-minimal derivative interaction of curvature to matter, it does not introduce harmful higher-derivatives. For this construction, we employ off-shell chiral and real linear multiplets. Physical scalars are accommodated in the chiral multiplet whereas curvature resides in a linear one.