No Arabic abstract
We report on transcritical bifurcations of periodic orbits in non-integrable two-dimensional Hamiltonian systems. We discuss their existence criteria and some of their properties using a recent mathematical description of transcritical bifurcations in families of symplectic maps. We then present numerical examples of transcritical bifurcations in a class of generalized Henon-Heiles Hamiltonians and illustrate their stabilities and unfoldings under various perturbations of the Hamiltonians. We demonstrate that for Hamiltonians containing straight-line librating orbits, the transcritical bifurcation of these orbits is the typical case which occurs also in the absence of any discrete symmetries, while their isochronous pitchfork bifurcation is an exception. We determine the normal forms of both types of bifurcations and derive the uniform approximation required to include transcritically bifurcating orbits in the semiclassical trace formula for the density of states of the quantum Hamiltonian. We compute the coarse-grained density of states in a specific example both semiclassically and quantum mechanically and find excellent agreement of the results.
We study entanglement in two coupled quartic oscillators. It is shown that the entanglement, as measured by the von Neumann entropy, increases with the classical chaos parameter for generic chaotic eigenstates. We consider certain isolated periodic orbits whose bifurcation sequence affects a class of quantum eigenstates, called the channel localized states. For these states, the entanglement is a local minima in the vicinity of a pitchfork bifurcation but is a local maxima near a anti-pitchfork bifurcation. We place these results in the context of the close connections that may exist between entanglement measures and conventional measures of localization that have been much studied in quantum chaos and elsewhere. We also point to an interesting near-degeneracy that arises in the spectrum of reduced density matrices of certain states as an interplay of localization and symmetry.
We examine the properties of a recently proposed model for antigenic variation in malaria which incorporates multiple epitopes and both long-lasting and transient immune responses. We show that in the case of a vanishing decay rate for the long-lasting immune response, the system exhibits the so-called bifurcations without parameters due to the existence of a hypersurface of equilibria in the phase space. When the decay rate of the long-lasting immune response is different from zero, the hypersurface of equilibria degenerates, and a multitude of other steady states are born, many of which are related by a permutation symmetry of the system. The robustness of the fully symmetric state of the system was investigated by means of numerical computation of transverse Lyapunov exponents. The results of this exercise indicate that for a vanishing decay of long-lasting immune response, the fully symmetric state is not robust in the substantial part of the parameter space, and instead all variants develop their own temporal dynamics contributing to the overall time evolution. At the same time, if the decay rate of the long-lasting immune response is increased, the fully symmetric state can become robust provided the growth rate of the long-lasting immune response is rapid.
An epidemic model with distributed time delay is derived to describe the dynamics of infectious diseases with varying immunity. It is shown that solutions are always positive, and the model has at most two steady states: disease-free and endemic. It is proved that the disease-free equilibrium is locally and globally asymptotically stable. When an endemic equilibrium exists, it is possible to analytically prove its local and global stability using Lyapunov functionals. Bifurcation analysis is performed using DDE-BIFTOOL and traceDDE to investigate different dynamical regimes in the model using numerical continuation for different values of system parameters and different integral kernels.
We investigate the behavior of the Generalized Alignment Index of order $k$ (GALI$_k$) for regular orbits of multidimensional Hamiltonian systems. The GALI$_k$ is an efficient chaos indicator, which asymptotically attains positive values for regular motion when $2leq k leq N$, with $N$ being the dimension of the torus on which the motion occurs. By considering several regular orbits in the neighborhood of two typical simple, stable periodic orbits of the Fermi-Pasta-Ulam-Tsingou (FPUT) $beta$ model for various values of the systems degrees of freedom, we show that the asymptotic GALI$_k$ values decrease when the indexs order $k$ increases and when the orbits energy approaches the periodic orbits destabilization energy where the stability island vanishes, while they increase when the considered regular orbit moves further away from the periodic one for a fixed energy. In addition, performing extensive numerical simulations we show that the indexs behavior does not depend on the choice of the initial deviation vectors needed for its evaluation.
We describe combinatorial approaches to the question of whether families of real matrices admit pairs of nonreal eigenvalues passing through the imaginary axis. When the matrices arise as Jacobian matrices in the study of dynamical systems, these conditions provide necessary conditions for Hopf bifurcations to occur in parameterised families of such systems. The techniques depend on the spectral properties of additive compound matrices: in particular, we associate with a product of matrices a signed, labelled digraph termed a DSR^[2] graph, which encodes information about the second additive compound of this product. A condition on the cycle structure of this digraph is shown to rule out the possibility of nonreal eigenvalues with positive real part. The techniques developed are applied to systems of interacting elements termed interaction networks, of which networks of chemical reactions are a special case.