We report a high-resolution neutron diffraction study on the orbitally-degenerate spin-1/2 hexagonal antiferromagnet AgNiO2. A structural transition to a tripled unit cell with expanded and contracted NiO6 octahedra indicates root(3) x root(3) charge order on the Ni triangular lattice. This suggests charge order as a possible mechanism of lifting the orbital degeneracy in the presence of charge fluctuations, as an alternative to Jahn-Teller distortions. A novel magnetic ground state is observed at base temperatures with the electron-rich S = 1 Ni sites arranged in alternating ferromagnetic rows on a triangular lattice, surrounded by a honeycomb network of non-magnetic and metallic Ni ions. We also report first-principles band-structure calculations that explain microscopically the origin of these phenomena.
We report a high-resolution neutron diffraction study of the crystal and magnetic structure of the orbitally-degenerate frustrated metallic magnet AgNiO2. At high temperatures the structure is hexagonal with a single crystallographic Ni site, low-spin Ni3+ with spin-1/2 and two-fold orbital degeneracy, arranged in an antiferromagnetic triangular lattice with frustrated spin and orbital order. A structural transition occurs upon cooling below 365 K to a tripled hexagonal unit cell containing three crystallographically-distinct Ni sites with expanded and contracted NiO6 octahedra, naturally explained by spontaneous charge order on the Ni triangular layers. No Jahn-Teller distortions occur, suggesting that charge order occurs in order to lift the orbital degeneracy. Symmetry analysis of the inferred Ni charge order pattern and the observed oxygen displacement pattern suggests that the transition could be mediated by charge fluctuations at the Ni sites coupled to a soft oxygen optical phonon breathing mode. At low temperatures the electron-rich Ni sublattice (assigned to a valence close to Ni2+ with S = 1) orders magnetically into a collinear stripe structure of ferromagnetic rows ordered antiferromagnetically in the triangular planes. We discuss the stability of this uncommon spin order pattern in the context of an easy-axis triangular antiferromagnet with additional weak second neighbor interactions and interlayer couplings.
We report resonant X-ray scattering measurements on the orbitally-degenerate triangular metallic antiferromagnet 2H-AgNiO2 to probe the spontaneous transition to a triple-cell superstructure at temperatures below 365 K. We observe a strong resonant enhancement of the supercell reflections through the Ni K-edge. The empirically extracted K-edge shift between the crystallographically-distinct Ni sites of 2.5(3) eV is much larger than the value expected from the shift in final states, and implies a core-level shift of ~1 eV, thus providing direct evidence for the onset of spontaneous honeycomb charge order in the triangular Ni layers. We also provide band-structure calculations that explain quantitatively the observed edge shifts in terms of changes in the Ni electronic energy levels due to charge order and hybridization with the surrounding oxygens.
We report inelastic neutron scattering measurements of the spin dynamics in the layered hexagonal magnet 2H-AgNiO2 which has stacked triangular layers of antiferromagnetically-coupled Ni2+ spins (S=1) ordered in a collinear alternating stripe pattern. We observe a broad band of magnetic excitations above a small gap of 1.8 meV and extending up to 7.5 meV, indicating strongly dispersive excitations. The measured dispersions of the boundaries of the powder-averaged spectrum can be quantitatively explained by a linear spin-wave dispersion for triangular layers with antiferromagnetic nearest- and weak next-nearest neighbor couplings, a strong easy-axis anisotropy and additional weak inter-layer couplings. The resulting dispersion relation has global minima not at magnetic Bragg wavevectors but at symmetry-related soft points and we attribute this anomalous feature to the strong competition between the easy-axis anisotropy and the frustrated antiferromagnetic couplings. We have also calculated the quantum corrections to the dispersion relation to order 1/S in spin-wave theory by extending the work of Chubukov and Jolicoeur [Phys. Rev. B v46, 11137 (1992)] and find that the presence of easy-axis anisotropy significantly reduces the quantum renormalizations predicted for the isotropic model.
We discuss the ground state of a pyrochlore lattice of threefold-orbitally-degenerate $S=1/2$ magnetic ions. We derive an effective spin-orbital Hamiltonian and show that the orbital degrees of freedom can modulate the spin exchange, removing the infinite spin-degeneracy characteristic of pyrochlore structures. The resulting state is a collection of spin-singlet dimers, with a residual degeneracy due to their relative orientation. This latter is lifted by a magneto-elastic interaction, induced in the spin-singlet phase-space, that forces a tetragonal distortion. Such a theory provides an explanation for the helical spin-singlet pattern observed in the B-spinel MgTi$_2$O$_4$.
We observe a disappearance of the 1/3 magnetization plateau and a striking change of the magnetic configuration under a moderate doping of the model triangular antiferromagnet RbFe(MoO4)2. The reason is an effective lifting of degeneracy of mean-field ground states by a random potential of impurities, which compensates, in the low temperature limit, the fluctuation contribution to free energy. These results provide a direct experimental confirmation of the fluctuation origin of the ground state in a real frustrated system. The change of the ground state to a least collinear configuration reveals an effective positive biquadratic exchange provided by the structural disorder. On heating, doped samples regain the structure of a pure compound thus allowing for an investigation of the remarkable competition between thermal and structural disorder.