Do you want to publish a course? Click here

Valence bond crystal in a pyrochlore antiferromagnet with orbital degeneracy

59   0   0.0 ( 0 )
 Added by George Jackeli
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the ground state of a pyrochlore lattice of threefold-orbitally-degenerate $S=1/2$ magnetic ions. We derive an effective spin-orbital Hamiltonian and show that the orbital degrees of freedom can modulate the spin exchange, removing the infinite spin-degeneracy characteristic of pyrochlore structures. The resulting state is a collection of spin-singlet dimers, with a residual degeneracy due to their relative orientation. This latter is lifted by a magneto-elastic interaction, induced in the spin-singlet phase-space, that forces a tetragonal distortion. Such a theory provides an explanation for the helical spin-singlet pattern observed in the B-spinel MgTi$_2$O$_4$.



rate research

Read More

We discuss the ground state properties of a spin 1/2 magnetic ion with threefold $t_{2g}$ orbital degeneracy on a highly frustrated pyrochlore lattice, like Ti$^{3+}$ ion in B-spinel MgTi$_2$O$_4$. We formulate an effective spin-orbital Hamiltonian and study its low energy sector by constructing several exact-eigenstates in the limit of vanishing Hunds coupling. We find that orbital degrees of freedom modulate the spin-exchange energies, release the infinite spin-degeneracy of pyrochlore structure, and drive the system to a non-magnetic spin-singlet manifold. The latter is a collection of spin-singlet dimers and is, however, highly degenerate with respect of dimer orientations. This ``orientational degeneracy is then lifted by a magneto-elastic interaction that optimizes the previous energy gain by distorting the bonds in suitable directions and leading to a tetragonal phase. In this way a valence bond crystal state is formed, through the condensation of dimers along helical chains running around the tetragonal c-axis, as actually observed in MgTi$_2$O$_4$. The orbitally ordered pattern in the dimerized phase is predicted to be of ferro-type along the helices and of antiferro-type between them. Finally, through analytical considerations as well as numerical ab-initio simulations, we predict a possible experimental tool for the observation of such an orbital ordering, through resonant x-ray scattering.
197 - R. L. Doretto 2013
We study the plaquette valence-bond solid phase of the spin-1/2 J_1-J_2 antiferromagnet Heisenberg model on the square lattice within the bond-operator theory. We start by considering four S = 1/2 spins on a single plaquette and determine the bond operator representation for the spin operators in terms of singlet, triplet, and quintet boson operators. The formalism is then applied to the J_1-J_2 model and an effective interacting boson model in terms of singlets and triplets is derived. The effective model is analyzed within the harmonic approximation and the previous results of Zhitomirsky and Ueda [Phys. Rev. B 54, 9007 (1996)] are recovered. By perturbatively including cubic (triplet-triplet-triplet and singlet-triplet-triplet) and quartic interactions, we find that the plaquette valence-bond solid phase is stable within the parameter region 0.34 < J_2/J_1 < 0.59, which is narrower than the harmonic one. Differently from the harmonic approximation, the excitation gap vanishes at both critical couplings J_2 = 0.34 J_1 and J_2 = 0.59 J_1. Interestingly, for J_2 < 0.48 J_1, the excitation gap corresponds to a singlet-triplet excitation at the $Gamma$ point while, for J_2 > 0.48 J_1, it is related to a singlet-singlet excitation at the X = (pi/2,0) point of the tetramerized Brillouin zone.
We report a high-resolution neutron diffraction study on the orbitally-degenerate spin-1/2 hexagonal antiferromagnet AgNiO2. A structural transition to a tripled unit cell with expanded and contracted NiO6 octahedra indicates root(3) x root(3) charge order on the Ni triangular lattice. This suggests charge order as a possible mechanism of lifting the orbital degeneracy in the presence of charge fluctuations, as an alternative to Jahn-Teller distortions. A novel magnetic ground state is observed at base temperatures with the electron-rich S = 1 Ni sites arranged in alternating ferromagnetic rows on a triangular lattice, surrounded by a honeycomb network of non-magnetic and metallic Ni ions. We also report first-principles band-structure calculations that explain microscopically the origin of these phenomena.
The trimer resonating valence bond (tRVB) state consisting of an equal-weight superposition of trimer coverings on a square lattice is proposed. A model Hamiltonian of the Rokhsar-Kivelson type for which the tRVB becomes the exact ground state is written. The state is shown to have $9^g$ topological degeneracy on genus g surface and support $Z_3$ vortex excitations. Correlation functions show exponential behavior with a very short correlation length consistent with the gapped spectrum. The classical problem of the degeneracy of trimer configurations is investigated by the transfer matrix method.
The local atomic and magnetic structures of the compounds $A$MnO$_2$ ($A$ = Na, Cu), which realize a geometrically frustrated, spatially anisotropic triangular lattice of Mn spins, have been investigated by atomic and magnetic pair distribution function analysis of neutron total scattering data. Relief of frustration in CuMnO$_2$ is accompanied by a conventional cooperative symmetry-lowering lattice distortion driven by Neel order. In NaMnO$_2$, however, the distortion has a short-range nature. A cooperative interaction between the locally broken symmetry and short-range magnetic correlations lifts the magnetic degeneracy on a nanometer length scale, enabling long-range magnetic order in the Na-derivative. The degree of frustration, mediated by residual disorder, contributes to the rather differing pathways to a single, stable magnetic ground state in these two related compounds. This study demonstrates how nanoscale structural distortions that cause local-scale perturbations can lift the ground state degeneracy and trigger macroscopic magnetic order.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا