Do you want to publish a course? Click here

Phenomenological template family for black-hole coalescence waveforms

394   0   0.0 ( 0 )
 Added by P Ajith
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent progress in numerical relativity has enabled us to model the non-perturbative merger phase of the binary black-hole coalescence problem. Based on these results, we propose a phenomenological family of waveforms which can model the inspiral, merger, and ring-down stages of black hole coalescence. We also construct a template bank using this family of waveforms and discuss its implementation in the search for signatures of gravitational waves produced by black-hole coalescences in the data of ground-based interferometers. This template bank might enable us to extend the present inspiral searches to higher-mass binary black-hole systems, i.e., systems with total mass greater than about 80 solar masses, thereby increasing the reach of the current generation of ground-based detectors.



rate research

Read More

Gravitational waves (GW) from coalescing stellar-mass black hole binaries (BBH) are expected to be detected by the Advanced Laser Interferometer Gravitational-wave Observatory and Advanced Virgo. Detection searches operate by matched-filtering the detector data using a bank of waveform templates. Traditionally, template banks for BBH are constructed from intermediary analytical waveform models which are calibrated against numerical relativity simulations and which can be aluated for any choice of BBH parameters. This paper explores an alternative to the traditional approach, namely the construction of template banks directly from numerical BBH simulations. Using non-spinning BBH systems as an example, we demonstrate which regions of the mass-parameter plane can be covered with existing numerical BBH waveforms. We estimate the required number and required length of BBH simulations to cover the entire non-spinning BBH parameter plane up to mass-ratio 10, thus illustrating that our approach can be used to guide parameter placement of future numerical simulations. We derive error bounds which are independent of analytical waveform models; therefore, our formalism can be used to independently test the accuracy of such waveform models. The resulting template banks are suitable for advanced LIGO searches.
Gravitational wave searches to date have largely focused on non-precessing systems. Including precession effects greatly increases the number of templates to be searched over. This leads to a corresponding increase in the computational cost and can increase the false alarm rate of a realistic search. On the other hand, there might be astrophysical systems that are entirely missed by non-precessing searches. In this paper we consider the problem of constructing a template bank using stochastic methods for neutron-star--black-hole binaries allowing for precession, but with the restrictions that the orientation of the total angular momentum of the binary is pointing towards the detector and that the neutron-star spin is negligible relative to that of the black-hole. We quantify the number of templates required for the search, and we explicitly construct the template bank. We show that despite the large number of templates, stochastic methods can be adapted to solve the problem. We quantify the parameter space region over which the non-precessing search might miss signals.
The planned Laser Interferometer Space Antenna (LISA) is expected to detect the inspiral and merger of massive black hole binaries (MBHBs) at z <~ 5 with signal-to-noise ratios (SNRs) of hundreds to thousands. Because of these high SNRs, and because these SNRs accrete over periods of weeks to months, it should be possible to extract the physical parameters of these systems with high accuracy; for instance, for a ~ 10^6 Msun MBHBs at z = 1 it should be possible to determine the two masses to ~ 0.1% and the sky location to ~ 1 degree. However, those are just the errors due to noise: there will be additional theoretical errors due to inaccuracies in our best model waveforms, which are still only approximate. The goal of this paper is to estimate the typical magnitude of these theoretical errors. We develop mathematical tools for this purpose, and apply them to a somewhat simplified version of the MBHB problem, in which we consider just the inspiral part of the waveform and neglect spin-induced precession, eccentricity, and PN amplitude corrections. For this simplified version, we estimate that theoretical uncertainties in sky position will typically be ~ 1 degree, i.e., comparable to the statistical uncertainty. For the mass and spin parameters, our results suggest that while theoretical errors will be rather small absolutely, they could still dominate over statistical errors (by roughly an order of magnitude) for the strongest sources. The tools developed here should be useful for estimating the magnitude of theoretical errors in many other problems in gravitational-wave astronomy.
Matched filtering is a popular data analysis framework used to search for gravitational wave signals emitted by compact object binaries. The templates used in matched filtering searches are constructed predominantly from the quadrupolar mode because this mode is the energetically most dominant channel. However, for highly precessing binaries or binaries with moderately large mass ratios, significant power is also carried by higher-order modes. We investigate how the inclusion of higher modes in the templates increases the prospects for detecting gravitational waves. Specifically, we use numerical relativity waveforms from the late inspiral and coalescence of binary black holes to identify mode hierarchies that cover the sky of binary orientations. We show that the ordering in these hierarchies depends on the characteristics of the binary system and the mode strengths. Our study demonstrates that detecting moderately high precessing or unequal mass binaries requires the inclusion of higher modes in the templates banks.
238 - P. Ajith , S. Babak , Y. Chen 2009
Gravitational waveforms from the inspiral and ring-down stages of the binary black hole coalescences can be modelled accurately by approximation/perturbation techniques in general relativity. Recent progress in numerical relativity has enabled us to model also the non-perturbative merger phase of the binary black-hole coalescence problem. This enables us to emph{coherently} search for all three stages of the coalescence of non-spinning binary black holes using a single template bank. Taking our motivation from these results, we propose a family of template waveforms which can model the inspiral, merger, and ring-down stages of the coalescence of non-spinning binary black holes that follow quasi-circular inspiral. This two-dimensional template family is explicitly parametrized by the physical parameters of the binary. We show that the template family is not only emph{effectual} in detecting the signals from black hole coalescences, but also emph{faithful} in estimating the parameters of the binary. We compare the sensitivity of a search (in the context of different ground-based interferometers) using all three stages of the black hole coalescence with other template-based searches which look for individual stages separately. We find that the proposed search is significantly more sensitive than other template-based searches for a substantial mass-range, potentially bringing about remarkable improvement in the event-rate of ground-based interferometers. As part of this work, we also prescribe a general procedure to construct interpolated template banks using non-spinning black hole waveforms produced by numerical relativity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا