Do you want to publish a course? Click here

Template Mode Hierarchies for Binary Black Hole Mergers

123   0   0.0 ( 0 )
 Added by Pablo Laguna
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Matched filtering is a popular data analysis framework used to search for gravitational wave signals emitted by compact object binaries. The templates used in matched filtering searches are constructed predominantly from the quadrupolar mode because this mode is the energetically most dominant channel. However, for highly precessing binaries or binaries with moderately large mass ratios, significant power is also carried by higher-order modes. We investigate how the inclusion of higher modes in the templates increases the prospects for detecting gravitational waves. Specifically, we use numerical relativity waveforms from the late inspiral and coalescence of binary black holes to identify mode hierarchies that cover the sky of binary orientations. We show that the ordering in these hierarchies depends on the characteristics of the binary system and the mode strengths. Our study demonstrates that detecting moderately high precessing or unequal mass binaries requires the inclusion of higher modes in the templates banks.



rate research

Read More

Scalar fields coupled to the Gauss-Bonnet invariant can undergo a tachyonic instability, leading to spontaneous scalarization of black holes. Studies of this effect have so far been restricted to single black hole spacetimes. We present the first results on dynamical scalarization in head-on collisions and quasicircular inspirals of black hole binaries with numerical relativity simulations. We show that black hole binaries can either form a scalarized remnant or dynamically descalarize by shedding off its initial scalar hair. The observational implications of these findings are discussed.
Gravitational waves (GW) from coalescing stellar-mass black hole binaries (BBH) are expected to be detected by the Advanced Laser Interferometer Gravitational-wave Observatory and Advanced Virgo. Detection searches operate by matched-filtering the detector data using a bank of waveform templates. Traditionally, template banks for BBH are constructed from intermediary analytical waveform models which are calibrated against numerical relativity simulations and which can be aluated for any choice of BBH parameters. This paper explores an alternative to the traditional approach, namely the construction of template banks directly from numerical BBH simulations. Using non-spinning BBH systems as an example, we demonstrate which regions of the mass-parameter plane can be covered with existing numerical BBH waveforms. We estimate the required number and required length of BBH simulations to cover the entire non-spinning BBH parameter plane up to mass-ratio 10, thus illustrating that our approach can be used to guide parameter placement of future numerical simulations. We derive error bounds which are independent of analytical waveform models; therefore, our formalism can be used to independently test the accuracy of such waveform models. The resulting template banks are suitable for advanced LIGO searches.
139 - Maria Okounkova 2020
Recently, it has been shown that with the inclusion of overtones, the post-merger gravitational waveform at infinity of a binary black hole system is well-modelled using pure linear theory. However, given that a binary black hole merger is expected to be highly non-linear, where do these non-linearities, which do not make it out to infinity, go? We visualize quantities measuring non-linearity in the strong-field region of a numerical relativity binary black hole merger in order to begin to answer this question.
In a binary black hole merger, it is known that the inspiral portion of the waveform corresponds to two distinct horizons orbiting each other, and the merger and ringdown signals correspond to the final horizon being formed and settling down to equilibrium. However, we still lack a detailed understanding of the relation between the horizon geometry in these three regimes and the observed waveform. Here we show that the well known inspiral chirp waveform has a clear counterpart on black hole horizons, namely, the shear of the outgoing null rays at the horizon. We demonstrate that the shear behaves very much like a compact binary coalescence waveform with increasing frequency and amplitude. Furthermore, the parameters of the system estimated from the horizon agree with those estimated from the waveform. This implies that even though black hole horizons are causally disconnected from us, assuming general relativity to be true, we can potentially infer some of their detailed properties from gravitational wave observations.
Despite recent progress in numerical simulations of the coalescence of binary black hole systems, highly asymmetric spinning systems and the construction of accurate physical templates remain challenging and computationally expensive. We explore the feasibility of a prompt and robust test of whether the signals exhibit evidence for generic features that can educate new simulations. We form catalogs of numerical relativity waveforms with distinct physical effects and compute the relative probability that a gravitational wave signal belongs to each catalog. We introduce an algorithm designed to perform this task for coalescence signals using principal component analysis of waveform catalogs and Bayesian model selection and demonstrate its effectiveness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا