Do you want to publish a course? Click here

On Bogomolny-Schmit conjecture

167   0   0.0 ( 0 )
 Added by Dmitry Beliaev
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bogomolny and Schmit proposed that the critical edge percolation on the square lattice is a good model for the nodal domains of a random plane wave. Based on this they made a conjecture about the number of nodal domains. Recent computer experiments showed that the mean number of clusters per vertex and the mean number of nodal domains per unit area are very close but different. Since the original argument was mostly supported by numerics, it was believed that the percolation model is wrong. In this paper we give some numerical evidence in favour of the percolation model.



rate research

Read More

By analogy with conjectures for random matrices, Fyodorov-Hiary-Keating and Fyodorov-Keating proposed precise asymptotics for the maximum of the Riemann zeta function in a typical short interval on the critical line. In this paper, we settle the upper bound part of their conjecture in a strong form. More precisely, we show that the measure of those $T leq t leq 2T$ for which $$ max_{|h| leq 1} |zeta(1/2 + i t + i h)| > e^y frac{log T }{(loglog T)^{3/4}}$$ is bounded by $Cy e^{-2y}$ uniformly in $y geq 1$. This is expected to be optimal for $y= O(sqrt{loglog T})$. This upper bound is sharper than what is known in the context of random matrices, since it gives (uniform) decay rates in $y$. In a subsequent paper we will obtain matching lower bounds.
121 - Ruoshi Yuan , Yian Ma , Bo Yuan 2010
We provide a constructive proof on the equivalence of two fundamental concepts: the global Lyapunov function in engineering and the potential function in physics, establishing a bridge between these distinct fields. This result suggests new approaches on the significant unsolved problem namely to construct Lyapunov functions for general nonlinear systems through the analogy with existing methods on potential functions. In addition, we show another connection that the Lyapunov equation is a reduced form of the generalized Einstein relation for linear systems.
120 - Laszlo Ujfalusi , Imre Varga , 2011
In this work we investigate the inverse of the celebrated Bohigas-Giannoni-Schmit conjecture. Using two inversion methods we compute a one-dimensional potential whose lowest N eigenvalues obey random matrix statistics. Our numerical results indicate that in the asymptotic limit, N->infinity, the solution is nowhere differentiable and most probably nowhere continuous. Thus such a counterexample does not exist.
Recently the phase space structures governing reaction dynamics in Hamiltonian systems have been identified and algorithms for their explicit construction have been developed. These phase space structures are induced by saddle type equilibrium points which are characteristic for reaction type dynamics. Their construction is based on a Poincar{e}-Birkhoff normal form. Using tools from the geometric theory of Hamiltonian systems and their reduction we show in this paper how the construction of these phase space structures can be generalized to the case of the relative equilibria of a rotational symmetry reduced $N$-body system. As rotations almost always play an important role in the reaction dynamics of molecules the approach presented in this paper is of great relevance for applications.
The steady state for a system of N particle under the influence of an external field and a Gaussian thermostat and colliding with random virtual scatterers can be obtained explicitly in the limit of small field. We show the sequence of steady state distribution, as N varies, forms a chaotic sequence in the sense that the k particle marginal, in the limit of large N, is the k-fold tensor product of the 1 particle marginal. We also show that the chaoticity properties holds in the stronger form of entropic chaoticity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا