Do you want to publish a course? Click here

Distantly supervised relation extraction is widely used in the construction of knowledge bases due to its high efficiency. However, the automatically obtained instances are of low quality with numerous irrelevant words. In addition, the strong assump tion of distant supervision leads to the existence of noisy sentences in the sentence bags. In this paper, we propose a novel Multi-Layer Revision Network (MLRN) which alleviates the effects of word-level noise by emphasizing inner-sentence correlations before extracting relevant information within sentences. Then, we devise a balanced and noise-resistant Confidence-based Multi-Instance Learning (CMIL) method to filter out noisy sentences as well as assign proper weights to relevant ones. Extensive experiments on two New York Times (NYT) datasets demonstrate that our approach achieves significant improvements over the baselines.
To alleviate human efforts from obtaining large-scale annotations, Semi-Supervised Relation Extraction methods aim to leverage unlabeled data in addition to learning from limited samples. Existing self-training methods suffer from the gradual drift p roblem, where noisy pseudo labels on unlabeled data are incorporated during training. To alleviate the noise in pseudo labels, we propose a method called MetaSRE, where a Relation Label Generation Network generates accurate quality assessment on pseudo labels by (meta) learning from the successful and failed attempts on Relation Classification Network as an additional meta-objective. To reduce the influence of noisy pseudo labels, MetaSRE adopts a pseudo label selection and exploitation scheme which assesses pseudo label quality on unlabeled samples and only exploits high-quality pseudo labels in a self-training fashion to incrementally augment labeled samples for both robustness and accuracy. Experimental results on two public datasets demonstrate the effectiveness of the proposed approach.
Distantly supervised models are very popular for relation extraction since we can obtain a large amount of training data using the distant supervision method without human annotation. In distant supervision, a sentence is considered as a source of a tuple if the sentence contains both entities of the tuple. However, this condition is too permissive and does not guarantee the presence of relevant relation-specific information in the sentence. As such, distantly supervised training data contains much noise which adversely affects the performance of the models. In this paper, we propose a self-ensemble filtering mechanism to filter out the noisy samples during the training process. We evaluate our proposed framework on the New York Times dataset which is obtained via distant supervision. Our experiments with multiple state-of-the-art neural relation extraction models show that our proposed filtering mechanism improves the robustness of the models and increases their F1 scores.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا