Do you want to publish a course? Click here

A computationally expensive and memory intensive neural network lies behind the recent success of language representation learning. Knowledge distillation, a major technique for deploying such a vast language model in resource-scarce environments, tr ansfers the knowledge on individual word representations learned without restrictions. In this paper, inspired by the recent observations that language representations are relatively positioned and have more semantic knowledge as a whole, we present a new knowledge distillation objective for language representation learning that transfers the contextual knowledge via two types of relationships across representations: Word Relation and Layer Transforming Relation. Unlike other recent distillation techniques for the language models, our contextual distillation does not have any restrictions on architectural changes between teacher and student. We validate the effectiveness of our method on challenging benchmarks of language understanding tasks, not only in architectures of various sizes but also in combination with DynaBERT, the recently proposed adaptive size pruning method.
Abstract Recent improvements in the predictive quality of natural language processing systems are often dependent on a substantial increase in the number of model parameters. This has led to various attempts of compressing such models, but existing m ethods have not considered the differences in the predictive power of various model components or in the generalizability of the compressed models. To understand the connection between model compression and out-of-distribution generalization, we define the task of compressing language representation models such that they perform best in a domain adaptation setting. We choose to address this problem from a causal perspective, attempting to estimate the average treatment effect (ATE) of a model component, such as a single layer, on the model's predictions. Our proposed ATE-guided Model Compression scheme (AMoC), generates many model candidates, differing by the model components that were removed. Then, we select the best candidate through a stepwise regression model that utilizes the ATE to predict the expected performance on the target domain. AMoC outperforms strong baselines on dozens of domain pairs across three text classification and sequence tagging tasks.1
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا