Do you want to publish a course? Click here

Language models used in speech recognition are often either evaluated intrinsically using perplexity on test data, or extrinsically with an automatic speech recognition (ASR) system. The former evaluation does not always correlate well with ASR perfo rmance, while the latter could be specific to particular ASR systems. Recent work proposed to evaluate language models by using them to classify ground truth sentences among alternative phonetically similar sentences generated by a fine state transducer. Underlying such an evaluation is the assumption that the generated sentences are linguistically incorrect. In this paper, we first put this assumption into question, and observe that alternatively generated sentences could often be linguistically correct when they differ from the ground truth by only one edit. Secondly, we showed that by using multi-lingual BERT, we can achieve better performance than previous work on two code-switching data sets. Our implementation is publicly available on Github at https://github.com/sikfeng/language-modelling-for-code-switching.
We evaluate the use of direct intrinsic word embedding evaluation tasks for specialized language. Our case study is philosophical text: human expert judgements on the relatedness of philosophical terms are elicited using a synonym detection task and a coherence task. Uniquely for our task, experts must rely on explicit knowledge and cannot use their linguistic intuition, which may differ from that of the philosopher. We find that inter-rater agreement rates are similar to those of more conventional semantic annotation tasks, suggesting that these tasks can be used to evaluate word embeddings of text types for which implicit knowledge may not suffice.
Abstract This study carries out a systematic intrinsic evaluation of the semantic representations learned by state-of-the-art pre-trained multimodal Transformers. These representations are claimed to be task-agnostic and shown to help on many downstr eam language-and-vision tasks. However, the extent to which they align with human semantic intuitions remains unclear. We experiment with various models and obtain static word representations from the contextualized ones they learn. We then evaluate them against the semantic judgments provided by human speakers. In line with previous evidence, we observe a generalized advantage of multimodal representations over language- only ones on concrete word pairs, but not on abstract ones. On the one hand, this confirms the effectiveness of these models to align language and vision, which results in better semantic representations for concepts that are grounded in images. On the other hand, models are shown to follow different representation learning patterns, which sheds some light on how and when they perform multimodal integration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا