Do you want to publish a course? Click here

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose Label Reasoning Network(LRN), which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Recent transformer-based approaches demonstrate promising results on relational scientific information extraction. Existing datasets focus on high-level description of how research is carried out. Instead we focus on the subtleties of how experimenta l associations are presented by building SciClaim, a dataset of scientific claims drawn from Social and Behavior Science (SBS), PubMed, and CORD-19 papers. Our novel graph annotation schema incorporates not only coarse-grained entity spans as nodes and relations as edges between them, but also fine-grained attributes that modify entities and their relations, for a total of 12,738 labels in the corpus. By including more label types and more than twice the label density of previous datasets, SciClaim captures causal, comparative, predictive, statistical, and proportional associations over experimental variables along with their qualifications, subtypes, and evidence. We extend work in transformer-based joint entity and relation extraction to effectively infer our schema, showing the promise of fine-grained knowledge graphs in scientific claims and beyond.
BERTScore, a recently proposed automatic metric for machine translation quality, uses BERT, a large pre-trained language model to evaluate candidate translations with respect to a gold translation. Taking advantage of BERT's semantic and syntactic ab ilities, BERTScore seeks to avoid the flaws of earlier approaches like BLEU, instead scoring candidate translations based on their semantic similarity to the gold sentence. However, BERT is not infallible; while its performance on NLP tasks set a new state of the art in general, studies of specific syntactic and semantic phenomena have shown where BERT's performance deviates from that of humans more generally. This naturally raises the questions we address in this paper: what are the strengths and weaknesses of BERTScore? Do they relate to known weaknesses on the part of BERT? We find that while BERTScore can detect when a candidate differs from a reference in important content words, it is less sensitive to smaller errors, especially if the candidate is lexically or stylistically similar to the reference.
Existing text classification methods mainly focus on a fixed label set, whereas many real-world applications require extending to new fine-grained classes as the number of samples per label increases. To accommodate such requirements, we introduce a new problem called coarse-to-fine grained classification, which aims to perform fine-grained classification on coarsely annotated data. Instead of asking for new fine-grained human annotations, we opt to leverage label surface names as the only human guidance and weave in rich pre-trained generative language models into the iterative weak supervision strategy. Specifically, we first propose a label-conditioned fine-tuning formulation to attune these generators for our task. Furthermore, we devise a regularization objective based on the coarse-fine label constraints derived from our problem setting, giving us even further improvements over the prior formulation. Our framework uses the fine-tuned generative models to sample pseudo-training data for training the classifier, and bootstraps on real unlabeled data for model refinement. Extensive experiments and case studies on two real-world datasets demonstrate superior performance over SOTA zero-shot classification baselines.
Despite the success of neural dialogue systems in achieving high performance on the leader-board, they cannot meet users' requirements in practice, due to their poor reasoning skills. The underlying reason is that most neural dialogue models only cap ture the syntactic and semantic information, but fail to model the logical consistency between the dialogue history and the generated response. Recently, a new multi-turn dialogue reasoning task has been proposed, to facilitate dialogue reasoning research. However, this task is challenging, because there are only slight differences between the illogical response and the dialogue history. How to effectively solve this challenge is still worth exploring. This paper proposes a Fine-grained Comparison Model (FCM) to tackle this problem. Inspired by human's behavior in reading comprehension, a comparison mechanism is proposed to focus on the fine-grained differences in the representation of each response candidate. Specifically, each candidate representation is compared with the whole history to obtain a history consistency representation. Furthermore, the consistency signals between each candidate and the speaker's own history are considered to drive a model prefer a candidate that is logically consistent with the speaker's history logic. Finally, the above consistency representations are employed to output a ranking list of the candidate responses for multi-turn dialogue reasoning. Experimental results on two public dialogue datasets show that our method obtains higher ranking scores than the baseline models.
Fine-grained temporal relation extraction (FineTempRel) aims to recognize the durations and timeline of event mentions in text. A missing part in the current deep learning models for FineTempRel is their failure to exploit the syntactic structures of the input sentences to enrich the representation vectors. In this work, we propose to fill this gap by introducing novel methods to integrate the syntactic structures into the deep learning models for FineTempRel. The proposed model focuses on two types of syntactic information from the dependency trees, i.e., the syntax-based importance scores for representation learning of the words and the syntactic connections to identify important context words for the event mentions. We also present two novel techniques to facilitate the knowledge transfer between the subtasks of FineTempRel, leading to a novel model with the state-of-the-art performance for this task.
We present the results and main findings of the shared task at WOAH 5 on hateful memes detection. The task include two subtasks relating to distinct challenges in the fine-grained detection of hateful memes: (1) the protected category attacked by the meme and (2) the attack type. 3 teams submitted system description papers. This shared task builds on the hateful memes detection task created by Facebook AI Research in 2020.
Current abusive language detection systems have demonstrated unintended bias towards sensitive features such as nationality or gender. This is a crucial issue, which may harm minorities and underrepresented groups if such systems were integrated in r eal-world applications. In this paper, we create ad hoc tests through the CheckList tool (Ribeiro et al., 2020) to detect biases within abusive language classifiers for English. We compare the behaviour of two BERT-based models, one trained on a generic hate speech dataset and the other on a dataset for misogyny detection. Our evaluation shows that, although BERT-based classifiers achieve high accuracy levels on a variety of natural language processing tasks, they perform very poorly as regards fairness and bias, in particular on samples involving implicit stereotypes, expressions of hate towards minorities and protected attributes such as race or sexual orientation. We release both the notebooks implemented to extend the Fairness tests and the synthetic datasets usable to evaluate systems bias independently of CheckList.
Contextual advertising provides advertisers with the opportunity to target the context which is most relevant to their ads. The large variety of potential topics makes it very challenging to collect training documents to build a supervised classifica tion model or compose expert-written rules in a rule-based classification system. Besides, in fine-grained classification, different categories often overlap or co-occur, making it harder to classify accurately. In this work, we propose wiki2cat, a method to tackle large-scaled fine-grained text classification by tapping on the Wikipedia category graph. The categories in the IAB taxonomy are first mapped to category nodes in the graph. Then the label is propagated across the graph to obtain a list of labeled Wikipedia documents to induce text classifiers. The method is ideal for large-scale classification problems since it does not require any manually-labeled document or hand-curated rules or keywords. The proposed method is benchmarked with various learning-based and keyword-based baselines and yields competitive performance on publicly available datasets and a new dataset containing more than 300 fine-grained categories.
Fine-grained opinion mining (OM) has achieved increasing attraction in the natural language processing (NLP) community, which aims to find the opinion structures of Who expressed what opinions towards what'' in one sentence. In this work, motivated b y its span-based representations of opinion expressions and roles, we propose a unified span-based approach for the end-to-end OM setting. Furthermore, inspired by the unified span-based formalism of OM and constituent parsing, we explore two different methods (multi-task learning and graph convolutional neural network) to integrate syntactic constituents into the proposed model to help OM. We conduct experiments on the commonly used MPQA 2.0 dataset. The experimental results show that our proposed unified span-based approach achieves significant improvements over previous works in the exact F1 score and reduces the number of wrongly-predicted opinion expressions and roles, showing the effectiveness of our method. In addition, incorporating the syntactic constituents achieves promising improvements over the strong baseline enhanced by contextualized word representations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا