Do you want to publish a course? Click here

Cross-domain Named Entity Recognition (NER) transfers the NER knowledge from high-resource domains to the low-resource target domain. Due to limited labeled resources and domain shift, cross-domain NER is a challenging task. To address these challeng es, we propose a progressive domain adaptation Knowledge Distillation (KD) approach -- PDALN. It achieves superior domain adaptability by employing three components: (1) Adaptive data augmentation techniques, which alleviate cross-domain gap and label sparsity simultaneously; (2) Multi-level Domain invariant features, derived from a multi-grained MMD (Maximum Mean Discrepancy) approach, to enable knowledge transfer across domains; (3) Advanced KD schema, which progressively enables powerful pre-trained language models to perform domain adaptation. Extensive experiments on four benchmarks show that PDALN can effectively adapt high-resource domains to low-resource target domains, even if they are diverse in terms and writing styles. Comparison with other baselines indicates the state-of-the-art performance of PDALN.
Unsupervised consistency training is a way of semi-supervised learning that encourages consistency in model predictions between the original and augmented data. For Named Entity Recognition (NER), existing approaches augment the input sequence with t oken replacement, assuming annotations on the replaced positions unchanged. In this paper, we explore the use of paraphrasing as a more principled data augmentation scheme for NER unsupervised consistency training. Specifically, we convert Conditional Random Field (CRF) into a multi-label classification module and encourage consistency on the entity appearance between the original and paraphrased sequences. Experiments show that our method is especially effective when annotations are limited.
Material science synthesis procedures are a promising domain for scientific NLP, as proper modeling of these recipes could provide insight into new ways of creating materials. However, a fundamental challenge in building information extraction models for material science synthesis procedures is getting accurate labels for the materials, operations, and other entities of those procedures. We present a new corpus of entity mention annotations over 595 Material Science synthesis procedural texts (157,488 tokens), which greatly expands the training data available for the Named Entity Recognition task. We outline a new label inventory designed to provide consistent annotations and a new annotation approach intended to maximize the consistency and annotation speed of domain experts. Inter-annotator agreement studies and baseline models trained upon the data suggest that the corpus provides high-quality annotations of these mention types. This corpus helps lay a foundation for future high-quality modeling of synthesis procedures.
In joint entity and relation extraction, existing work either sequentially encode task-specific features, leading to an imbalance in inter-task feature interaction where features extracted later have no direct contact with those that come first. Or t hey encode entity features and relation features in a parallel manner, meaning that feature representation learning for each task is largely independent of each other except for input sharing. We propose a partition filter network to model two-way interaction between tasks properly, where feature encoding is decomposed into two steps: partition and filter. In our encoder, we leverage two gates: entity and relation gate, to segment neurons into two task partitions and one shared partition. The shared partition represents inter-task information valuable to both tasks and is evenly shared across two tasks to ensure proper two-way interaction. The task partitions represent intra-task information and are formed through concerted efforts of both gates, making sure that encoding of task-specific features is dependent upon each other. Experiment results on six public datasets show that our model performs significantly better than previous approaches. In addition, contrary to what previous work has claimed, our auxiliary experiments suggest that relation prediction is contributory to named entity prediction in a non-negligible way. The source code can be found at https://github.com/Coopercoppers/PFN.
While powerful pre-trained language models have improved the fluency of text generation models, semantic adequacy -the ability to generate text that is semantically faithful to the input- remains an unsolved issue. In this paper, we introduce a novel automatic evaluation metric, Entity-Based Semantic Adequacy, which can be used to assess to what extent generation models that verbalise RDF (Resource Description Framework) graphs produce text that contains mentions of the entities occurring in the RDF input. This is important as RDF subject and object entities make up 2/3 of the input. We use our metric to compare 25 models from the WebNLG Shared Tasks and we examine correlation with results from human evaluations of semantic adequacy. We show that while our metric correlates with human evaluation scores, this correlation varies with the specifics of the human evaluation setup. This suggests that in order to measure the entity-based adequacy of generated texts, an automatic metric such as the one proposed here might be more reliable, as less subjective and more focused on correct verbalisation of the input, than human evaluation measures.
Generating informative and appropriate responses is challenging but important for building human-like dialogue systems. Although various knowledge-grounded conversation models have been proposed, these models have limitations in utilizing knowledge t hat infrequently occurs in the training data, not to mention integrating unseen knowledge into conversation generation. In this paper, we propose an Entity-Agnostic Representation Learning (EARL) method to introduce knowledge graphs to informative conversation generation. Unlike traditional approaches that parameterize the specific representation for each entity, EARL utilizes the context of conversations and the relational structure of knowledge graphs to learn the category representation for entities, which is generalized to incorporating unseen entities in knowledge graphs into conversation generation. Automatic and manual evaluations demonstrate that our model can generate more informative, coherent, and natural responses than baseline models.
Named entity disambiguation (NED), which involves mapping textual mentions to structured entities, is particularly challenging in the medical domain due to the presence of rare entities. Existing approaches are limited by the presence of coarse-grain ed structural resources in biomedical knowledge bases as well as the use of training datasets that provide low coverage over uncommon resources. In this work, we address these issues by proposing a cross-domain data integration method that transfers structural knowledge from a general text knowledge base to the medical domain. We utilize our integration scheme to augment structural resources and generate a large biomedical NED dataset for pretraining. Our pretrained model with injected structural knowledge achieves state-of-the-art performance on two benchmark medical NED datasets: MedMentions and BC5CDR. Furthermore, we improve disambiguation of rare entities by up to 57 accuracy points.
To alleviate label scarcity in Named Entity Recognition (NER) task, distantly supervised NER methods are widely applied to automatically label data and identify entities. Although the human effort is reduced, the generated incomplete and noisy annota tions pose new challenges for learning effective neural models. In this paper, we propose a novel dictionary extension method which extracts new entities through the type expanded model. Moreover, we design a multi-granularity boundary-aware network which detects entity boundaries from both local and global perspectives. We conduct experiments on different types of datasets, the results show that our model outperforms previous state-of-the-art distantly supervised systems and even surpasses the supervised models.
Knowledge graph entity typing aims to infer entities' missing types in knowledge graphs which is an important but under-explored issue. This paper proposes a novel method for this task by utilizing entities' contextual information. Specifically, we d esign two inference mechanisms: i) N2T: independently use each neighbor of an entity to infer its type; ii) Agg2T: aggregate the neighbors of an entity to infer its type. Those mechanisms will produce multiple inference results, and an exponentially weighted pooling method is used to generate the final inference result. Furthermore, we propose a novel loss function to alleviate the false-negative problem during training. Experiments on two real-world KGs demonstrate the effectiveness of our method. The source code and data of this paper can be obtained from https://github.com/CCIIPLab/CET.
Cross-lingual entity alignment (EA) aims to find the equivalent entities between crosslingual KGs (Knowledge Graphs), which is a crucial step for integrating KGs. Recently, many GNN-based EA methods are proposed and show decent performance improvemen ts on several public datasets. However, existing GNN-based EA methods inevitably inherit poor interpretability and low efficiency from neural networks. Motivated by the isomorphic assumption of GNN-based methods, we successfully transform the cross-lingual EA problem into an assignment problem. Based on this re-definition, we propose a frustratingly Simple but Effective Unsupervised entity alignment method (SEU) without neural networks. Extensive experiments have been conducted to show that our proposed unsupervised approach even beats advanced supervised methods across all public datasets while having high efficiency, interpretability, and stability.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا