Do you want to publish a course? Click here

The oil reservoirs exploitation processes are one of very important steps of petroleum industry. The rentability of investor reservoir is related to correct planning and accurate understanding of rock properties and liquids flow in porous media. T he complexity of porous media contains hydrocarbon materials, with phases changes related to thermo-physiochemical phenomena, make the classical methods used to study the reservoir recovery are inaccurate and insufficient to predict the performance and behavior of reservoir. Recently, simulation and modeling are used to decrease the risks in the decision of the optimal recovery method, and achieve the best possible rentability. This method provides predictive capacity help us to better understanding of reservoir. By the suitable input data, we can solve the calibrated mathematical model analytically or numerically. We present in this research the formulation of mathematical model of isotropic-one dimension reservoir with single phase fluid flow. The numerical solution, the application of this model, and the mechanism of pressure diffusivity along productive formation, will be presented to simulate a reservoir with injection and production wells.
In this research an absorptive cooling cycle system modeling which can be used for conditioning purposes by using EES program was done. By using this program, the effect of temperature of the vapor generator, the evaporator and the condenser on the p erformance of the vapor cycle and the circulating coefficient was studied as well as the effect of the evaporating range width in the generator and the definition the values and ideal ranges for each part. The result showed that whenever the condenser temperature increases the performance coefficient ( COP ) decreases, and by increasing the condensation temperature from 18 – 36 C , thus the values of the circulating coefficient increases, while the average temperature released from the condenser to the external environment decreases at the same range of the previous temperature, and that the increase of the evaporator temperature would increase the performance coefficient ( COP ). An absorptive cooling circuit system modeling using water and lithium bromide was achieved. Results showed that the increase of the evaporator temperature of between 4 -13 C, the average of heat amount drawn from the desired place to be cooled would increase.
This research presents new procedures to calculate the aggregates weight and the water requirement to realize a controlled concrete mixing design, where the aggregates proportion is defined by numerical method according to referential curve draw as r eferring to the proposed fine aggregate ratio and the required water will be calculated as referring to the aggregates surface area. The results showed the facility and the reliability of the proposed design procedures.
GIS software provide manual import tools to maps produced on CAD software to be transformed to geo-database. This operation consumes time and effort. The "transformation" however will not be adequate unless we analyze the relation between CAD and GI S software in preparing maps. The question raised here if this relation competitive or integrative? This research tries to answer this matter by studying it from different angles: modeling, spatial feature, scale, spatial analysis and data management. Analyses reveal that this relation isn't competitive at all, but rather integrative, as CAD software produce technical\design plans, whereas GIS software are dedicated for the production of general and thematic maps. Thus, CAD based spatial data (topographic, cadastral, master plans) could be "up-graded" to be efficient in GIS environment. However available tools to make this are basically manual, and for that, an automated approach was developed to execute this upgrade from CAD to GIS. This new approach was applied and evaluated and the output results were satisfactory accurate, time\effort saving, and indeed didn't miss any of CAD layers. This all could be achieved if being conditioned with the approach constrains.
This paper presents a study aimed at improving the performance of the machine, hot steel rolling, and make them conform to international standards, where the study includes two phases: the first includes mathematical modeling and simulation programmi ng language with a rolling machine. The second phase will include the development and testing of alternative control systems. I tested the validity of this model through analyzes of performance curves derived from simulated and compared with the values of the curves and tables station real taken from the HSRMP. Through ensure this form to the parameters of the system characteristic variables representing the performance of the real station, this makes it a useful tool allows simulation of plant performance, explain the behavior of variables The test cases in addition to the possibility of change work and operating strategies to improve the overall operation. From this model performed the initial analysis, which proved the possibility of improving the performance of the station to implement the following modifications: • Reduce the value of hard integrative models associated with the rings are positioned in the final stage. • unification of all evil ratios for nutrition workshops. • Revolving transfer is located in the last phase . Note: HSRMP ( Hot strip rolling Mill plant ) .
Our Paper is a laboratory modeling research to evaluate the efficiency of finite element model in emulation the behavior of R.C. beams with shear deficiencies (ultimate load, mechanism of cracking and failure, load-deflection behavior) strengthened w ith GFRP strips. We tested nine R.C. beams 200x30x16 cm in three groups, the first consists of three R.C.beams for comparing, the second consists of three strengthened R.C. beams with two sides vertical GFRP strips, and the third also consists of three strengthened R.C. beams with two sides inclined (45°) GFRP strips. We modeled these beams by advanced finite element program Ansys10, and we get results agreed with our laboratory study.
This study aimed to describe the water erosion modeling in Daher Aljabal and its surrounding areas in Al-Sowaida Governorate based on GIA and RS. The water erosion risk map was obtained by applying GIS model developed on the basis of ten factors i nfluencing the erosion process. GIS layers were built for every factor. The weights for all factors were added together. Based on sum of these factors, water erosion was divided into six erosion risk levels. Results showed that 12% of the study area was classified in levels 5 and 6, which reflect high and very high water erosion risks. Land topography was the main factor in water soil erosion. Terraces are effective ways to decrease the water soil erodability. Results also showed that GIS and RS were powerful tools in water erosion risk assessment mapping.
Tunnels are usually considered as important and costly constructions and therefore it is very necessary to estimate their performance and analyze their structural behavior to maintain their safety in order to ensure their reliability and performan ce during their hypothetical life. In this issue we reviewed the situation of Syrian railway tunnels on Aleppo – Lattakia axis from the field observations which show that these tunnel linings are cracked. The numerical method, which is known as Distinct Element Method, was used in the analysis of cracked lining. This method performs modeling of discontinuous systems. We focused in this study on the concrete type through elasticity modulus and lining thickness. The result analysis shows that the effects of cracks modify the distribution of stresses and displacements in the lining. This modification is related to concrete elasticity modulus and mechanical crack characteristics.
This study was carried out to compare the performance of the FAO AquaCrop and CropWat models in simulating the effects of deficit irrigation on cotton crop. The models were calibrated using data from the 2007 growing season of a field study conduc ted to assess deficit irrigation effects on cotton, whereas the models were validated by comparing their outputs for yield and water use (ETc) with the measured values of the two variables in the 2008 and 2009. The relationship between measured and predicted values of yield and ETc revealed that the AquaCrop was better than CropWat in predicting water stress impact on yield and ETc. The linear regression equation for AquaCrop had a small intercept and its slope was very close to unity. The index of agreement (d) was close to one for both models, except its value for ETc in the 2009 year. Both models could reproduce the general trend of the changes in soil water content in the different irrigation levels. Accordingly, the use of AquaCrop instead of CropWat should be encouraged for management and planning of irrigation, since it is a practitioner type model keeps a good balance between output accuracy and simplicity.
The article studies the open loop and closed loop systems for the improved converter. An improved DC-DC boost converter is modeled and simulated using Matlab R2013a. The simulation and experimental results of the tow systems are presented and co mpared. The performance of the improved converter is also compared with the conventional boost converter.The article studies the open loop and closed loop systems for the improved converter. An improved DC-DC boost converter is modeled and simulated using Matlab R2013a. The simulation and experimental results of the tow systems are presented and compared. The performance of the improved converter is also compared with the conventional boost converter.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا