Do you want to publish a course? Click here

Generative Adversarial Networks (GANs) have achieved great success in image synthesis, but have proven to be difficult to generate natural language. Challenges arise from the uninformative learning signals passed from the discriminator. In other word s, the poor learning signals limit the learning capacity for generating languages with rich structures and semantics. In this paper, we propose to adopt the counter-contrastive learning (CCL) method to support the generator's training in language GANs. In contrast to standard GANs that adopt a simple binary classifier to discriminate whether a sample is real or fake, we employ a counter-contrastive learning signal that advances the training of language synthesizers by (1) pulling the language representations of generated and real samples together and (2) pushing apart representations of real samples to compete with the discriminator and thus prevent the discriminator from being overtrained. We evaluate our method on both synthetic and real benchmarks and yield competitive performance compared to previous GANs for adversarial sequence generation.
We propose the mixed-attention-based Generative Adversarial Network (named maGAN), and apply it for citation intent classification in scientific publication. We select domain-specific training data, propose a mixed-attention mechanism, and employ gen erative adversarial network architecture for pre-training language model and fine-tuning to the downstream multi-class classification task. Experiments were conducted on the SciCite datasets to compare model performance. Our proposed maGAN model achieved the best Macro-F1 of 0.8532.
Sentiment analysis has come a long way for high-resource languages due to the availability of large annotated corpora. However, it still suffers from lack of training data for low-resource languages. To tackle this problem, we propose Conditional Lan guage Adversarial Network (CLAN), an end-to-end neural architecture for cross-lingual sentiment analysis without cross-lingual supervision. CLAN differs from prior work in that it allows the adversarial training to be conditioned on both learned features and the sentiment prediction, to increase discriminativity for learned representation in the cross-lingual setting. Experimental results demonstrate that CLAN outperforms previous methods on the multilingual multi-domain Amazon review dataset. Our source code is released at https://github.com/hemanthkandula/clan.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا