Do you want to publish a course? Click here

Recently graph-based methods have been adopted for Abstractive Text Summarization. However, existing graph-based methods only consider either word relations or structure information, which neglect the correlation between them. To simultaneously captu re the word relations and structure information from sentences, we propose a novel Dual Graph network for Abstractive Sentence Summarization. Specifically, we first construct semantic scenario graph and semantic word relation graph based on FrameNet, and subsequently learn their representations and design graph fusion method to enhance their correlation and obtain better semantic representation for summary generation. Experimental results show our model outperforms existing state-of-the-art methods on two popular benchmark datasets, i.e., Gigaword and DUC 2004.
Extractive text summarization aims at extracting the most representative sentences from a given document as its summary. To extract a good summary from a long text document, sentence embedding plays an important role. Recent studies have leveraged gr aph neural networks to capture the inter-sentential relationship (e.g., the discourse graph) within the documents to learn contextual sentence embedding. However, those approaches neither consider multiple types of inter-sentential relationships (e.g., semantic similarity and natural connection relationships), nor model intra-sentential relationships (e.g, semantic similarity and syntactic relationship among words). To address these problems, we propose a novel Multiplex Graph Convolutional Network (Multi-GCN) to jointly model different types of relationships among sentences and words. Based on Multi-GCN, we propose a Multiplex Graph Summarization (Multi-GraS) model for extractive text summarization. Finally, we evaluate the proposed models on the CNN/DailyMail benchmark dataset to demonstrate effectiveness of our method.
While abstractive summarization in certain languages, like English, has already reached fairly good results due to the availability of trend-setting resources, like the CNN/Daily Mail dataset, and considerable progress in generative neural models, pr ogress in abstractive summarization for Arabic, the fifth most-spoken language globally, is still in baby shoes. While some resources for extractive summarization have been available for some time, in this paper, we present the first corpus of human-written abstractive news summaries in Arabic, hoping to lay the foundation of this line of research for this important language. The dataset consists of more than 21 thousand items. We used this dataset to train a set of neural abstractive summarization systems for Arabic by fine-tuning pre-trained language models such as multilingual BERT, AraBERT, and multilingual BART-50. As the Arabic dataset is much smaller than e.g. the CNN/Daily Mail dataset, we also applied cross-lingual knowledge transfer to significantly improve the performance of our baseline systems. The setups included two M-BERT-based summarization models originally trained for Hungarian/English and a similar system based on M-BART-50 originally trained for Russian that were further fine-tuned for Arabic. Evaluation of the models was performed in terms of ROUGE, and a manual evaluation of fluency and adequacy of the models was also performed.
Presentations are critical for communication in all areas of our lives, yet the creation of slide decks is often tedious and time-consuming. There has been limited research aiming to automate the document-to-slides generation process and all face a c ritical challenge: no publicly available dataset for training and benchmarking. In this work, we first contribute a new dataset, SciDuet, consisting of pairs of papers and their corresponding slides decks from recent years' NLP and ML conferences (e.g., ACL). Secondly, we present D2S, a novel system that tackles the document-to-slides task with a two-step approach: 1) Use slide titles to retrieve relevant and engaging text, figures, and tables; 2) Summarize the retrieved context into bullet points with long-form question answering. Our evaluation suggests that long-form QA outperforms state-of-the-art summarization baselines on both automated ROUGE metrics and qualitative human evaluation.
In this paper we apply self-knowledge distillation to text summarization which we argue can alleviate problems with maximum-likelihood training on single reference and noisy datasets. Instead of relying on one-hot annotation labels, our student summa rization model is trained with guidance from a teacher which generates smoothed labels to help regularize training. Furthermore, to better model uncertainty during training, we introduce multiple noise signals for both teacher and student models. We demonstrate experimentally on three benchmarks that our framework boosts the performance of both pretrained and non-pretrained summarizers achieving state-of-the-art results.
Automatic Text Summarization (ATS) is the task of generating concise and fluent summaries from one or more documents. In this paper, we present IceSum, the first Icelandic corpus annotated with human-generated summaries. IceSum consists of 1,000 onli ne news articles and their extractive summaries. We train and evaluate several neural network-based models on this dataset, comparing them against a selection of baseline methods. We find that an encoder-decoder model with a sequence-to-sequence based extractor obtains the best results, outperforming all baseline methods. Furthermore, we evaluate how the size of the training corpus affects the quality of the generated summaries. We release the corpus and the models with an open license.
This paper presents an efficient graph-enhanced approach to multi-document summarization (MDS) with an encoder-decoder Transformer model. This model is based on recent advances in pre-training both encoder and decoder on very large text data (Lewis e t al., 2019), and it incorporates an efficient encoding mechanism (Beltagy et al., 2020) that avoids the quadratic memory growth typical for traditional Transformers. We show that this powerful combination not only scales to large input documents commonly found when summarizing news clusters; it also enables us to process additional input in the form of auxiliary graph representations, which we derive from the multi-document clusters. We present a mechanism to incorporate such graph information into the encoder-decoder model that was pre-trained on text only. Our approach leads to significant improvements on the Multi-News dataset, overall leading to an average 1.8 ROUGE score improvement over previous work (Li et al., 2020). We also show improvements in a transfer-only setup on the DUC-2004 dataset. The graph encodings lead to summaries that are more abstractive. Human evaluation shows that they are also more informative and factually more consistent with their input documents.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا