Do you want to publish a course? Click here

Neural topic models (NTMs) apply deep neural networks to topic modelling. Despite their success, NTMs generally ignore two important aspects: (1) only document-level word count information is utilized for the training, while more fine-grained sentenc e-level information is ignored, and (2) external semantic knowledge regarding documents, sentences and words are not exploited for the training. To address these issues, we propose a variational autoencoder (VAE) NTM model that jointly reconstructs the sentence and document word counts using combinations of bag-of-words (BoW) topical embeddings and pre-trained semantic embeddings. The pre-trained embeddings are first transformed into a common latent topical space to align their semantics with the BoW embeddings. Our model also features hierarchical KL divergence to leverage embeddings of each document to regularize those of their sentences, paying more attention to semantically relevant sentences. Both quantitative and qualitative experiments have shown the efficacy of our model in 1) lowering the reconstruction errors at both the sentence and document levels, and 2) discovering more coherent topics from real-world datasets.
Relational knowledge bases (KBs) are commonly used to represent world knowledge in machines. However, while advantageous for their high degree of precision and interpretability, KBs are usually organized according to manually-defined schemas, which l imit their expressiveness and require significant human efforts to engineer and maintain. In this review, we take a natural language processing perspective to these limitations, examining how they may be addressed in part by training deep contextual language models (LMs) to internalize and express relational knowledge in more flexible forms. We propose to organize knowledge representation strategies in LMs by the level of KB supervision provided, from no KB supervision at all to entity- and relation-level supervision. Our contributions are threefold: (1) We provide a high-level, extensible taxonomy for knowledge representation in LMs; (2) Within our taxonomy, we highlight notable models, evaluation tasks, and findings, in order to provide an up-to-date review of current knowledge representation capabilities in LMs; and (3) We suggest future research directions that build upon the complementary aspects of LMs and KBs as knowledge representations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا