Do you want to publish a course? Click here

We investigate ideal-semisimple and congruence-semisimple semirings. We give several new characterizations of such semirings using e-projective and e-injective semimodules. We extend several characterizations of semisimple rings to (not necessarily subtractive) commutative semirings.
We investigate left k-Noetherian and left k-Artinian semirings. We characterize such semirings using i-injective semimodules. We prove in particular, a partial version of the celebrated Bass-Papp Theorem for semiring. We illustrate our main results by examples and counter examples.
Flat modules play an important role in the study of the category of modules over rings and in the characterization of some classes of rings. We study the e-flatness for semimodules introduced by the first author using his new notion of exact sequences of semimodules and its relationships with other notions of flatness for semimodules over semirings. We also prove that a subtractive semiring over which every right (left) semimodule is e-flat is a von Neumann regular semiring.
Injective modules play an important role in characterizing different classes of rings (e.g. Noetherian rings, semisimple rings). Some semirings have no non-zero injective semimodules (e.g. the semiring of non-negative integers). In this paper, we study some of the basic properties of the so called e-injective semimodules introduced by the first author using a new notion of exact sequences of semimodules. We clarify the relationships between the injective semimodules, the e-injective semimodule, and the i-injective semimodules through several implications, examples and counter examples. Moreover, we provide partial results for the so called Embedding Problem (of semimodules in injective semimodules).
Projective modules play an important role in the study of the category of modules over rings and in the characterization of various classes of rings. Several characterizations of projective objects which are equivalent for modules over rings are not necessarily equivalent for semimodules over an arbitrary semiring. We study several of these notions, in particular the e-projective semimodules introduced by the first author using his new notion of exact sequences of semimodules. As pushouts of semimodules play an important role in some of our proofs, we investigate them and give a constructive proof of their existence in a way that proved be very helpful.
Let $R$ be a commutative ring and $M$ a non-zero $R$-module. We introduce the class of emph{pseudo strongly hollow submodules} (emph{PS-hollow submodules}, for short) of $M$. Inspired by the theory of modules with emph{secondary representations}, we investigate modules which can be written as emph{finite} sums of PS-hollow submodules. In particular, we provide existence and uniqueness theorems for the existence of emph{minimal} PS-hollow strongly representations of modules over Artinian rings.
Let $R$ be a commutative ring. We investigate $R$-modules which can be written as emph{finite} sums of {it {second}} $R$-submodules (we call them emph{second representable}). We provide sufficient conditions for an $R$-module $M$ to be have a (minimal) second presentation, in particular within the class of lifting modules. Moreover, we investigate the class of (emph{main}) emph{second attached prime ideals} related to a module with such a presentation.
We introduce the notion of a (strongly) topological lattice $mathcal{L}=(L,wedge ,vee)$ with respect to a subset $Xsubsetneqq L;$ aprototype is the lattice of (two-sided) ideals of a ring $R,$ which is(strongly) topological with respect to the prime spectrum of $R.$ We investigate and characterize (strongly) topological lattices. Given a non-zero left $R$-module $M,$ we introduce and investigate the spectrum $mathrm{Spec}^{mathrm{f}}(M)$ of textit{first submodules} of $M.$ We topologize $mathrm{Spec}^{mathrm{f}}(M)$ and investigate the algebraic properties of $_{R}M$ by passing to the topological properties of the associated space.
In this paper, we introduce and investigate emph{bisemialgebras}andemph{ Hopf semialgebras} over commutative semirings. We generalize to the semialgebraic context several results on bialgebras and Hopf algebras over rings including the main reconstruction theorems and the emph{Fundamental Theorem of Hopf Algebras}. We also provide a notion of emph{quantum monoids} as Hopf semialgebras which are neither commutative nor cocommutative; this extends the Hopf algebraic notion of a quantum group. The generalization to the semialgebraic context is neither trivial nor straightforward due to the non-additive nature of the base category of Abelian monoids which is also neither Puppe-exact nor homological and does not necessarily have enough injectives.
This paper is an exposition of the so-called injective Morita contexts (in which the connecting bimodule morphisms are injective) and Morita $alpha$contexts (in which the connecting bimodules enjoy some local projectivity in the sense of Zimmermann-H uisgen). Motivated by situations in which only one trace ideal is in action, or the compatibility between the bimodule morphisms is not needed, we introduce the notions of Morita semi-contexts and Morita data, and investigate them. Injective Morita data will be used (with the help of static and adstatic modules) to establish equivalences between some intersecting subcategories related to subcategories of modules that are localized or colocalized by trace ideals of a Morita datum. We end up with applications of Morita $alpha$-contexts to $ast$-modules and injective right wide Morita contexts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا