Do you want to publish a course? Click here

Injective Morita contexts (revisited)

مضامين الموريتا الحقنية (مراجعة)

220   0   0.0 ( 0 )
 Added by Jawad Y. Abuhlail
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

This paper is an exposition of the so-called injective Morita contexts (in which the connecting bimodule morphisms are injective) and Morita $alpha$contexts (in which the connecting bimodules enjoy some local projectivity in the sense of Zimmermann-Huisgen). Motivated by situations in which only one trace ideal is in action, or the compatibility between the bimodule morphisms is not needed, we introduce the notions of Morita semi-contexts and Morita data, and investigate them. Injective Morita data will be used (with the help of static and adstatic modules) to establish equivalences between some intersecting subcategories related to subcategories of modules that are localized or colocalized by trace ideals of a Morita datum. We end up with applications of Morita $alpha$-contexts to $ast$-modules and injective right wide Morita contexts.



rate research

Read More

Injective modules play an important role in characterizing different classes of rings (e.g. Noetherian rings, semisimple rings). Some semirings have no non-zero injective semimodules (e.g. the semiring of non-negative integers). In this paper, we study some of the basic properties of the so called e-injective semimodules introduced by the first author using a new notion of exact sequences of semimodules. We clarify the relationships between the injective semimodules, the e-injective semimodule, and the i-injective semimodules through several implications, examples and counter examples. Moreover, we provide partial results for the so called Embedding Problem (of semimodules in injective semimodules).
205 - D.-M. Lu , Q.-S. Wu , J.J. Zhang 2018
We study Morita-equivalent version of the Zariski cancellation problem.
In this paper, we study on the primeness and semiprimeness of a Morita context related to the rings and modules. Necessary and sufficient conditions are investigated for an ideal of a Morita context to be a prime ideal and a semiprime ideal. In particular, we determine the conditions under which a Morita context is prime and semiprime.
282 - Francois Couchot 2009
It is proved that localizations of injective $R$-modules of finite Goldie dimension are injective if $R$ is an arithmetical ring satisfying the following condition: for every maximal ideal $P$, $R_P$ is either coherent or not semicoherent. If, in addition, each finitely generated $R$-module has finite Goldie dimension, then localizations of finitely injective $R$-modules are finitely injective too. Moreover, if $R$ is a Prufer domain of finite character, localizations of injective $R$-modules are injective.
Let $H$ and $L$ be two Hopf algebras such that their comodule categories are monoidal equivalent. We prove that if $H$ is a twisted Calabi-Yau (CY) Hopf algebra, then $L$ is a twisted CY algebra when it is homologically smooth. Especially, if $H$ is a Noetherian twisted CY Hopf algebra and $L$ has finite global dimension, then $L$ is a twisted CY algebra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا