Do you want to publish a course? Click here

Stochastic matrices and positive maps in matrix algebras proved to be very important tools for analysing classical and quantum systems. In particular they represent a natural set of transformations for classical and quantum states, respectively. Here we introduce the notion of pseudo-stochastic matrices and consider their semigroup property. Unlike stochastic matrices, pseudo-stochastic matrices are permitted to have matrix elements which are negative while respecting the requirement that the sum of the elements of each column is one. They also allow for convex combinations, and carry a Lie group structure which permits the introduction of Lie algebra generators. The quantum analog of a pseudo-stochastic matrix exists and is called a pseudo-positive map. They have the property of transforming a subset of quantum states (characterized by maximal purity or minimal von Neumann entropy requirements) into quantum states. Examples of qubit dynamics connected with diamond sets of stochastic matrices and pseudo-positive maps are dealt with.
An interaction free evolving state of a closed bipartite system composed of two interacting subsystems is a generally mixed state evolving as if the interaction were a c-number. In this paper we find the characteristic equation of states possessing similar properties for a bipartite systems governed by a linear dynamical equation whose generator is sum of a free term and an interaction term. In particular in the case of a small system coupled to its environment, we deduce the characteristic equation of decoherence free states namely mixed states evolving as if the interaction term were effectively inactive. Several examples illustrate the applicability of our theory in different physical contexts.
We provide a further analysis of the class of positive maps proposed ten years ago by Kossakowski. In particular we propose a new parametrization which reveals an elegant geometric structure and an interesting interplay between group theory and a certain class of positive maps.
We provide a simple class of 2-qudit states for which one is able to formulate necessary and sufficient conditions for separability. As a byproduct we generalize well known construction provided by Horodecki et al. for d=3. It is hoped that these states with known separability/entanglement properties may be used to test various notions in entanglement theory.
We provide a class of optimal nondecomposable entanglement witnesses for 4N x 4N composite quantum systems or, equivalently, a new construction of nondecomposable positive maps in the algebra of 4N x 4N complex matrices. This construction provides natural generalization of the Robertson map. It is shown that their structural physical approximations give rise to entanglement breaking channels.
We analyze a class of dynamics of open quantum systems which is governed by the dynamical map mutually commuting at different times. Such evolution may be effectively described via spectral analysis of the corresponding time dependent generators. We consider both Markovian and non-Markovian cases.
Bipartite states with vanishing quantum discord are necessarily separable and hence positive partial transpose (PPT). We show that 2 x N states satisfy additional property: the positivity of their partial transposition is recognized with respect to the canonical factorization of the original density operator. We call such states SPPT (for strong PPT). Therefore, we provide a natural witness for a quantum discord: if a 2 x N state is not SPPT it must contain nonclassical correlations measured by quantum discord. It is an analog of the celebrated Peres-Horodecki criterion: if a state is not PPT it must be entangled.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا