Do you want to publish a course? Click here

Interaction free and decoherence free states

136   0   0.0 ( 0 )
 Added by Dariusz Chruscinski
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

An interaction free evolving state of a closed bipartite system composed of two interacting subsystems is a generally mixed state evolving as if the interaction were a c-number. In this paper we find the characteristic equation of states possessing similar properties for a bipartite systems governed by a linear dynamical equation whose generator is sum of a free term and an interaction term. In particular in the case of a small system coupled to its environment, we deduce the characteristic equation of decoherence free states namely mixed states evolving as if the interaction term were effectively inactive. Several examples illustrate the applicability of our theory in different physical contexts.



rate research

Read More

We present a protocol to prepare decoherence free cluster states using ultracold atoms loaded in a two dimensional superlattice. The superlattice geometry leads to an array of 2*2 plaquettes, each of them holding four spin-1/2 particles that can be used for encoding a single logical qubit in the two-fold singlet subspace, insensitive to uniform magnetic field fluctuations in any direction. Dynamical manipulation of the supperlattice yields distinct inter and intra plaquette interactions and permits to realize one qubit and two qubit gates with high fidelity, leading to the generation of universal cluster states for measurement based quantum computation. Our proposal based on inter and intra plaquette interactions also opens the path to study polymerized Hamiltonians which support ground states describing arbitrary quantum circuits.
Quantum state transfer and teleportation, with qubits encoded in internal states of the atoms in cavities, among spatially separated nodes of a quantum network in decoherence-free subspace are proposed, based on a cavity-assisted interaction by single-photon pulses. We show in details the implementation of a logic-qubit Hadamard gate and a two-logic-qubit conditional gate, and discuss the experimental feasibility of our scheme.
Protecting quantum states from the decohering effects of the environment is of great importance for the development of quantum computation devices and quantum simulators. Here, we introduce a continuous dynamical decoupling protocol that enables us to protect the entangling gate operation between two qubits from the environmental noise. We present a simple model that involves two qubits which interact with each other with a strength that depends on their mutual distance and generates the entanglement among them, as well as in contact with an environment. The nature of the environment, that is, whether it acts as an individual or common bath to the qubits, is also controlled by the effective distance of qubits. Our results indicate that the introduced continuous dynamical decoupling scheme works well in protecting the entangling operation. Furthermore, under certain circumstances, the dynamics of the qubits naturally led them into a decoherence-free subspace which can be used complimentary to the continuous dynamical decoupling.
We outline a proposal for a method of preparing an encoded two-state system (logical qubit) that is immune to collective noise acting on the Hilbert space of the states supporting it. The logical qubit is comprised of three photonic three-state systems (qutrits) and is generated by the process of spontaneous parametric down conversion. The states are constructed using linear optical elements along with three down-conversion sources, and are deemed successful by the simultaneous detection of six events. We also show how to select a maximally entangled state of two qutrits by similar methods. For this maximally entangled state we describe conditions for the state to be decoherence-free which do not correspond to collective errors.
We show that two interacting physical systems may admit entangled pure or non separable mixed states evolving in time as if the mutual interaction hamiltonian were absent. In this paper we define these states Interaction Free Evolving (IFE) states and characterize their existence for a generic binary system described by a time independent Hamiltonian. A comparison between IFE subspace and the decoherence free subspace is reported. The set of all pure IFE states is explicitly constructed for a non homogeneous spin star system model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا