Do you want to publish a course? Click here

Witnessing quantum discord in 2 x N systems

130   0   0.0 ( 0 )
 Added by Dariusz Chruscinski
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bipartite states with vanishing quantum discord are necessarily separable and hence positive partial transpose (PPT). We show that 2 x N states satisfy additional property: the positivity of their partial transposition is recognized with respect to the canonical factorization of the original density operator. We call such states SPPT (for strong PPT). Therefore, we provide a natural witness for a quantum discord: if a 2 x N state is not SPPT it must contain nonclassical correlations measured by quantum discord. It is an analog of the celebrated Peres-Horodecki criterion: if a state is not PPT it must be entangled.



rate research

Read More

Hybrid quantum systems aim at combining the advantages of different physical systems and to produce novel quantum devices. In particular, the hybrid combination of superconducting circuits and spins in solid-state crystals is a versatile platform to explore many quantum electrodynamics problems. Recently, the remote coupling of nitrogen-vacancy center spins in diamond via a superconducting bus was demonstrated. However, a rigorous experimental test of the quantum nature of this hybrid system and in particular entanglement is still missing. We review the theoretical ideas to generate and detect entanglement, and present our own scheme to achieve this.
For the first time, we compute the quantum discord in bipartite systems containing up to nine qubits. An analytical expression is obtained for the discord in a bipartite system with three qubits. The dependence of the discord on the temperature and the structural parameter of the model is studied.
150 - Tao Li , Teng Ma , Yaokun Wang 2015
Weak measurement is a new way to manipulate and control quantum systems. Different from projection measurement, weak measurement only makes a small change in status. Applying weak measurement to quantum discord, Singh and Pati proposed a new kind of quantum correlations called super quantum discord (SQD) [Annals of Physics textbf{343},141(2014)]. Unfortunately, the super quantum discord is also difficult to calculate. There are only few explicit formulae about SQD. We derive an analytical formulae of SQD for general X-type two-qubit states, which surpass the conclusion for Werner states and Bell diagonal states. Furthermore, our results reveal more knowledge about the new insight of quantum correlation and give a new way to compare SQD with normal quantum discord. Finally, we analyze its dynamics under nondissipative channels.
We review the theoretical and the experimental aspects regarding the quantification and identification of quantum correlations in liquid-state nuclear magnetic resonance (NMR) systems at room temperature. We start by introducing a formal method to obtain the quantum discord and its classical counterpart in systems described by a deviation matrix. Next, we apply such a method to experimentally demonstrate that the peculiar dynamics, with a sudden change behaviour, of quantum discord under decoherence, theoretically predicted only for phase-noise channels, is also present even under the effect of a thermal environment. This result shows that such a phenomena are much stronger than we could think, at principle. Walking through a different path, we discuss an observable witness for the quantumness of correlations in two-qubit systems and present the first experimental implementation of such a quantity in a NMR setup. Such a witness could be very useful in situations were the knowledge of the nature of correlations (in contrast of how much correlations) presented in a given state is enough.
287 - M. A. Yurischev 2015
Quantum discord Q is a function of density matrix elements. The domain of such a function in the case of two-qubit system with X density matrix may consist of three subdomains at most: two ones where the quantum discord is expressed in closed analytical forms (Q_{pi/2} and Q_0) and an intermediate subdomain for which, to extract the quantum discord Q_theta, it is required to solve in general numerically a one-dimensional minimization problem to find the optimal measurement angle thetain(0,pi/2). Hence the quantum discord is given by a piecewise-analytic-numerical formula Q=min{Q_{pi/2}, Q_theta, Q_0}. Equations for determining the boundaries between these subdomains are obtained. The boundaries consist of bifurcation points. The Q_{theta} subdomains are discovered in the generalized Horodecki states, in the dynamical phase flip channel model, in the anisotropic spin systems at thermal equilibrium, in the heteronuclear dimers in an external magnetic field. We found that transitions between Q_{theta} subdomain and Q_{pi/2} and Q_0 ones occur suddenly but continuously and smoothly, i.e., nonanalyticity is hidden and can be observed in higher derivatives of discord function.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا