Do you want to publish a course? Click here

General Relativity is able to describe the dynamics of galaxies and larger cosmic structures only if most of the matter in the Universe is dark, namely it does not emit any electromagnetic radiation. Intriguingly, on the scale of galaxies, there is strong observational evidence that the presence of dark matter appears to be necessary only when the gravitational field inferred from the distribution of the luminous matter falls below an acceleration of the order of 10^(-10) m/s^2. In the standard model, which combines Newtonian gravity with dark matter, the origin of this acceleration scale is challenging and remains unsolved. On the contrary, the full set of observations can be neatly described, and were partly predicted, by a modification of Newtonian dynamics, dubbed MOND, that does not resort to the existence of dark matter. On the scale of galaxy clusters and beyond, however, MOND is not as successful as on the scale of galaxies, and the existence of some dark matter appears unavoidable. A model combining MOND with hot dark matter made of sterile neutrinos seems to be able to describe most of the astrophysical phenomenology, from the power spectrum of the cosmic microwave background anisotropies to the dynamics of dwarf galaxies. Whether there exists a yet unknown covariant theory that contains General Relativity and Newtonian gravity in the weak field limit, and MOND as the ultra-weak field limit is still an open question.
LambdaCDM, for the currently preferred cosmological density Omega_0 and cosmological constant Omega_Lambda, predicts that the Universe expansion decelerates from early times to redshift z~0.9 and accelerates at later times. On the contrary, the cosmological model based on conformal gravity predicts that the cosmic expansion has always been accelerating. To distinguish between these two very different cosmologies, we resort to gamma-ray bursts (GRBs), which have been suggested to probe the Universe expansion history at z>1, where identified type Ia supernovae (SNe) are rare. We use the full Bayesian approach to infer the cosmological parameters and the additional parameters required to describe the GRB data available in the literature. For the first time, we use GRBs as cosmological probes without any prior information from other data. In addition, when we combine the GRB samples with SNe, our approach neatly avoids all the inconsistencies of most numerous previous methods that are plagued by the so-called circularity problem. In fact, when analyzed properly, current data are consistent with distance moduli of GRBs and SNe that can respectively be, in a variant of conformal gravity, ~15 and ~3 magnitudes fainter than in LambdaCDM. Our results indicate that the currently available SN and GRB samples are accommodated equally well by both LambdaCDM and conformal gravity and do not exclude a continuous accelerated expansion. We conclude that GRBs are currently far from being effective cosmological probes, as they are unable to distinguish between these two very different expansion histories.
We run adiabatic N-body/hydrodynamical simulations of isolated self-gravitating gas clouds to test whether conformal gravity, an alternative theory to General Relativity, is able to explain the properties of X-ray galaxy clusters without resorting to dark matter. We show that the gas clouds rapidly reach equilibrium with a density profile which is well fit by a beta-model whose normalization and slope are in approximate agreement with observations. However, conformal gravity fails to yield the observed thermal properties of the gas cloud: (i) the mean temperature is at least an order of magnitude larger than observed; (ii) the temperature profiles increase with the square of the distance from the cluster center, in clear disagreement with real X-ray clusters. These results depend on a gravitational potential whose parameters reproduce the velocity rotation curves of spiral galaxies. However, this parametrization stands on an arbitrarily chosen conformal factor. It remains to be seen whether a different conformal factor, specified by a spontaneous breaking of the conformal symmetry, can reconcile this theory with observations.
We use scalar-field Lagrangians with a non-canonical kinetic term to obtain unified dark matter models where both the dark matter and the dark energy, the latter mimicking a cosmological constant, are described by the scalar field itself. In this framework, we propose a technique to reconstruct models where the effective speed of sound is small enough that the scalar field can cluster. These models avoid the strong time evolution of the gravitational potential and the large Integrated Sachs-Wolfe effect which have been a serious drawback of previously considered models. Moreover, these unified dark matter scalar field models can be easily generalized to behave as dark matter plus a dark energy component behaving like any type of quintessence fluid.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا