Do you want to publish a course? Click here

Gamma-ray bursts as cosmological probes: LambdaCDM vs. conformal gravity

152   0   0.0 ( 0 )
 Added by Antonaldo Diaferio
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

LambdaCDM, for the currently preferred cosmological density Omega_0 and cosmological constant Omega_Lambda, predicts that the Universe expansion decelerates from early times to redshift z~0.9 and accelerates at later times. On the contrary, the cosmological model based on conformal gravity predicts that the cosmic expansion has always been accelerating. To distinguish between these two very different cosmologies, we resort to gamma-ray bursts (GRBs), which have been suggested to probe the Universe expansion history at z>1, where identified type Ia supernovae (SNe) are rare. We use the full Bayesian approach to infer the cosmological parameters and the additional parameters required to describe the GRB data available in the literature. For the first time, we use GRBs as cosmological probes without any prior information from other data. In addition, when we combine the GRB samples with SNe, our approach neatly avoids all the inconsistencies of most numerous previous methods that are plagued by the so-called circularity problem. In fact, when analyzed properly, current data are consistent with distance moduli of GRBs and SNe that can respectively be, in a variant of conformal gravity, ~15 and ~3 magnitudes fainter than in LambdaCDM. Our results indicate that the currently available SN and GRB samples are accommodated equally well by both LambdaCDM and conformal gravity and do not exclude a continuous accelerated expansion. We conclude that GRBs are currently far from being effective cosmological probes, as they are unable to distinguish between these two very different expansion histories.



rate research

Read More

145 - P. Petitjean 2011
We review recent results on the high-redshift universe and the cosmic evolution obtained using Gamma Ray Bursts (GRBs) as tracers of high-redshift galaxies. Most of the results come from photometric and spectroscopic observations of GRB host galaxies once the afterglow has faded away but also from the analysis of the GRB afterglow line of sight as revealed by absorptions in their optical spectrum.
Coalescing binary systems, consisting of two collapsed objects, are among the most promising sources of high frequency gravitational waves signals detectable, in principle, by ground-based interferometers. Binary systems of Neutron Star or Black Hole/Neutron Star mergers should also give rise to short Gamma Ray Bursts, a subclass of Gamma Ray Bursts. Short-hard-Gamma Ray Bursts might thus provide a powerful way to infer the merger rate of two-collapsed object binaries. Under the hypothesis that most short Gamma Ray Bursts originate from binaries of Neutron Star or Black Hole/Neutron Star mergers, we outline here the possibility to associate short Gamma Ray Bursts as electromagnetic counterpart of coalescing binary systems.
122 - Patricia Schady 2017
Since the launch of the highly successful and ongoing Swift mission, the field of gamma-ray bursts (GRBs) has undergone a revolution. The arcsecond GRB localizations available within just a few minutes of the GRB alert has signified the continual sampling of the GRB evolution through the prompt to afterglow phases revealing unexpected flaring and plateau phases, the first detection of a kilonova coincident with a short GRB, and the identification of samples of low-luminosity, ultra-long, and highly dust extinguished GRBs. The increased numbers of GRB afterglows, GRB-supernova detections, redshifts, and host galaxy associations has greatly improved our understanding of what produces and powers these immense, cosmological explosions. Nevertheless, more high quality data often also reveal greater complexity. In this review, I summarize some of the milestones made in GRB research during the Swift era, and how previous widely accepted theoretical models have had to adapt to accommodate the new wealth of observational data.
Radio-loud neutron stars known as pulsars allow a wide range of experimental tests for fundamental physics, ranging from the study of super-dense matter to tests of general relativity and its alternatives. As a result, pulsars provide strong-field tests of gravity, they allow for the direct detection of gravitational waves in a pulsar timing array, and they promise the future study of black hole properties. This contribution gives an overview of the on-going experiments and recent results.
We investigate prolonged engine activities of short gamma-ray bursts (SGRBs), such as extended and/or plateau emissions, as high-energy gamma-ray counterparts to gravitational waves (GWs). Binary neutron-star mergers lead to relativistic jets and merger ejecta with $r$-process nucleosynthesis, which are observed as SGRBs and kilonovae/macronovae, respectively. Long-term relativistic jets may be launched by the merger remnant as hinted in X-ray light curves of some SGRBs. The prolonged jets may dissipate their kinetic energy within the radius of the cocoon formed by the jet-ejecta interaction. Then the cocoon supplies seed photons to non-thermal electrons accelerated at the dissipation region, causing high-energy gamma-ray production through the inverse Compton scattering process. We numerically calculate high-energy gamma-ray spectra in such a system using a one-zone and steady-state approximation, and show that GeV--TeV gamma-rays are produced with a duration of $10^2-10^5$ seconds. They can be detected by {it Fermi}/LAT or CTA as gamma-ray counterparts to GWs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا