No Arabic abstract
We use scalar-field Lagrangians with a non-canonical kinetic term to obtain unified dark matter models where both the dark matter and the dark energy, the latter mimicking a cosmological constant, are described by the scalar field itself. In this framework, we propose a technique to reconstruct models where the effective speed of sound is small enough that the scalar field can cluster. These models avoid the strong time evolution of the gravitational potential and the large Integrated Sachs-Wolfe effect which have been a serious drawback of previously considered models. Moreover, these unified dark matter scalar field models can be easily generalized to behave as dark matter plus a dark energy component behaving like any type of quintessence fluid.
Considering the general Lagrangian of k-essence models, we study and classify them through variables connected to the fluid equation of state parameter w_kappa. This allows to find solutions around which the scalar field describes a mixture of dark matter and cosmological constant-like dark energy, an example being the purely kinetic model proposed by Scherrer. Making the stronger assumption that the scalar field Lagrangian is exactly constant along solutions of the equation of motion, we find a general class of k-essence models whose classical trajectories directly describe a unified dark matter/dark energy (cosmological constant) fluid. While the simplest case of a scalar field with canonical kinetic term unavoidably leads to an effective sound speed c_s=1, thereby inhibiting the growth of matter inhomogeneities, more general non-canonical k-essence models allow for the possibility that c_s << 1 whenever matter dominates.
Dark matter (DM) may have its origin in a pre-Big Bang epoch, the cosmic inflation. Here, we consider for the first time a broad class of scenarios where a massive free scalar field unavoidably reaches an equilibrium between its classical and quantum dynamics in a characteristic time scale during inflation and sources the DM density. The study gives the abundance and perturbation spectrum of any DM component sourced by the scalar field. We show that this class of scenarios generically predicts enhanced structure formation, allowing one to test models where DM interacts with matter only gravitationally.
We study the evolution of linear density perturbations in the context of interacting scalar field-dark matter cosmologies, where the presence of the coupling acts as a stabilization mechanism for the runaway behavior of the scalar self-interaction potential as in the case of the Chameleon model. We show that in the adiabatic background regime of the system the rise of unstable growing modes of the perturbations is suppressed by the slow-roll dynamics of the field. Furthermore the coupled system behaves as an inhomogeneous adiabatic fluid. In contrast instabilities may develop for large values of the coupling constant, or along non-adiabatic solutions, characterized by a period of high-frequency dumped oscillations of the scalar field. In the latter case the dynamical instabilities of the field fluctuations, which are typical of oscillatory scalar field regimes, are amplified and transmitted by the coupling to dark matter perturbations.
We derive non-relativistic equations of motion for the formation of cosmological structure in a Scalar Field Dark Matter (SFDM) model corresponding to a complex scalar field endowed with a quadratic scalar potential. Starting with the full equations of motion written in the Newtonian gauge of scalar perturbations, we separate out the fields involved into relativistic and non-relativistic parts, and find the equations of motion for the latter that can be used to build up the full solution. One important assumption will also be that the SFDM field is in the regime of fast oscillations, under which its behavior is exactly that of cold dark matter. The resultant equations are quite similar to the Schrodinger-Poisson system of Newtonian boson stars plus relativistic leftovers. We exploit that similarity to show how to simulate, with minimum numerical effort, the formation of cosmological structure in SFDM models and others alike, and ultimately prove their viability as complete dark matter models.
The differential age data of astrophysical objects that have evolved passivelly during the history of the universe (e.g. red galaxies) allows to test theoretical cosmological models through the predicted Hubble function expressed in terms of the redshift $z$, $H(z)$. We use the observational data for $H(z)$ to test unified scenarios for dark matter and dark energy. Specifically, we focus our analysis on the Generalized Chaplygin Gas (GCG) and the viscous fluid (VF) models. For the GCG model, it is shown that the unified scenario for dark energy and dark matter requires some priors. For the VF model we obtain estimations for the free parameters that may be compared with further analysis mainly at perturbative level.