Do you want to publish a course? Click here

The cross-correlation of a foreground density field with two different background convergence fields can be used to measure cosmographic distance ratios and constrain dark energy parameters. We investigate the possibility of performing such measurements using a combination of optical galaxy surveys and HI intensity mapping surveys, with emphasis on the performance of the planned Square Kilometre Array (SKA). Using HI intensity mapping to probe the foreground density tracer field and/or the background source fields has the advantage of excellent redshift resolution and a longer lever arm achieved by using the lensing signal from high redshift background sources. Our results show that, for our best SKA-optical configuration of surveys, a constant equation of state for dark energy can be constrained to $simeq 8%$ for a sky coverage $f_{rm sky}=0.5$ and assuming a $sigma(Omega_{rm DE})=0.03$ prior for the dark energy density parameter. We also show that using the CMB as the second source plane is not competitive, even when considering a COrE-like satellite.
We present the most general parametrisation of models of dark energy in the form of a scalar field which is explicitly coupled to dark matter. We follow and extend the Parameterized Post-Friedmannian approach, previously applied to modified gravity theories, in order to include interacting dark energy. We demonstrate its use through a number of worked examples and show how the initially large parameter space of free functions can be significantly reduced and constrained to include only a few non-zero coefficients. This paves the way for a model-independent approach to classify and test interacting dark energy theories.
We investigate the feasibility of measuring weak gravitational lensing using 21cm intensity mapping with special emphasis on the performance of the planned Square Kilometre Array (SKA). We find that the current design for SKA-Mid should be able to measure the evolution of the lensing power spectrum at z~2-3 using this technique. This will be a probe of the expansion history of the universe and gravity at a unique range in redshift. The signal-to-noise is found to be highly dependent on evolution of the neutral hydrogen fraction in the universe with a higher HI density resulting in stronger signal. With realistic models for this, SKA Phase 1 should be capable of measuring the lensing power spectrum and its evolution. The signal-to-noises dependence on the area and diameter of the telescope array is quantified. We further demonstrate the applications of this technique by applying it to two specific coupled dark energy models that would be difficult to observationally distinguish without information from this range of redshift. We also investigate measuring the lensing signal with 21cm emission from the Epoch of Reionization (EoR) using SKA-Low and find that it is unlikely to constrain cosmological parameters because of the small survey size, but could provide a map of the dark matter within a small region of the sky.
We study how 21 cm intensity mapping can be used to measure gravitational lensing over a wide range of redshift. This can extend weak lensing measurements to higher redshifts than are accessible with conventional galaxy surveys. We construct a convergence estimator taking into account the discreteness of galaxies and calculate the expected noise level as a function of redshift and telescope parameters. At $z sim 2-3$ we find that a telescope array with a collecting area $sim 0.2 , {rm km}^2$ spread over a region with diameter $sim 2 , {rm km}$ would be sufficient to measure the convergence power spectrum to high accuracy for multipoles between 10 and 1,000. We show that these measurements can be used to constrain interacting dark energy models.
We present three distinct types of models of dark energy in the form of a scalar field which is explicitly coupled to dark matter. Our construction draws from the pull-back formalism for fluids and generalises the fluid action to involve couplings to the scalar field. We investigate the cosmology of each class of model both at the background and linearly perturbed level. We choose a potential for the scalar field and a specific coupling function for each class of models and we compute the Cosmic Microwave Background and matter power spectra.
BINGO is a concept for performing a 21cm intensity mapping survey using a single dish telescope. We briefly discuss the idea of intensity mapping and go on to define our single dish concept. This involves a sim 40 m dish with an array of sim 50 feed horns placed sim 90 m above the dish using a pseudo-correlation detection system based on room temperature LNAs and one of the celestial poles as references. We discuss how such an array operating between 960 and 1260 MHz could be used to measure the acoustic scale to 2.4% over the redshift range 0.13<z<0.48 in around 1 year of on-source integration time by performing a 10 deg times 200 deg drift scan survey with a resolution of sim 2/3 deg.
We discuss the detection of large scale HI intensity fluctuations using a single dish approach with the ultimate objective of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. We present 3D power spectra, 2D angular power spectra for individual redshift slices, and also individual line-of-sight spectra, computed using the S^3 simulated HI catalogue which is based on the Millennium Simulation. We consider optimal instrument design and survey strategies for a single dish observation at low and high redshift for a fixed sensitivity. For a survey corresponding to an instrument with T_sys=50 K, 50 feed horns and 1 year of observations, we find that at low redshift (z approx 0.3), a resolution of 40 arc min and a survey of 5000 deg^2 is close to optimal, whereas at higher redshift (z approx 0.9) a resolution of 10 arcmin and 500 deg^2 would be necessary. Continuum foreground emission from the Galaxy and extragalactic radio sources are potentially a problem. We suggest that it could be that the dominant extragalactic foreground comes from the clustering of very weak sources. We assess its amplitude and discuss ways by which it might be mitigated. We then introduce our concept for a single dish telescope designed to detect BAO at low redshifts. It involves an under-illumintated static 40 m dish and a 60 element receiver array held 90 m above the under-illuminated dish. Correlation receivers will be used with each main science beam referenced against an antenna pointing at one of the Celestial Poles for stability and control of systematics. We make sensitivity estimates for our proposed system and projections for the uncertainties on the power spectrum after 1 year of observations. We find that it is possible to measure the acoustic scale at zapprox 0.3 with an accuracy 2.4% and that w can be measured to an accuracy of 16%.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا