Do you want to publish a course? Click here

The Parameterized Post-Friedmannian Framework for Interacting Dark Energy Theories

247   0   0.0 ( 0 )
 Added by Alkistis Pourtsidou
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the most general parametrisation of models of dark energy in the form of a scalar field which is explicitly coupled to dark matter. We follow and extend the Parameterized Post-Friedmannian approach, previously applied to modified gravity theories, in order to include interacting dark energy. We demonstrate its use through a number of worked examples and show how the initially large parameter space of free functions can be significantly reduced and constrained to include only a few non-zero coefficients. This paves the way for a model-independent approach to classify and test interacting dark energy theories.

rate research

Read More

A non-minimal coupling between the dark matter and dark energy components may offer a way of solving the so-called coincidence problem. In this paper we propose a low-$z$ test for such hypothesis using measurements of the gas mass fraction $f_{rm{gas}}$ in relaxed and massive galaxy clusters. The test applies to any model whose dilution of dark matter is modified with respect to the standard $a^{-3}$ scaling, as usual in interacting models, where $a$ is the cosmological scale factor. We apply the test to current $f_{rm{gas}}$ data and perform Monte Carlo simulations to forecast the necessary improvements in number and accuracy of upcoming observations to detect a possible interaction in the cosmological dark sector. Our results show that improvements in the present relative error $sigma_{rm{gas}}/f_{rm{gas}}$ are more effective to achieve this goal than an increase in the size of the $f_{rm{gas}}$ sample.
We investigate cosmological implications of an energy density contribution arising by elastic dark matter self-interactions. Its scaling behaviour shows that it can be the dominant energy contribution in the early universe. Constraints from primordial nucleosynthesis give an upper limit on the self-interaction strength which allows for the same strength as standard model strong interactions. Furthermore we explore the cosmological consequences of an early self-interaction dominated universe. Chemical dark matter decoupling requires that self-interacting dark matter particles are rather light (keV range) but we find that super-weak inelastic interactions are predicted by strong elastic dark matter self-interactions. Assuming a second, collisionless cold dark matter component, its natural decoupling scale exceeds the weak scale and is in accord with the electron and positron excess observed by PAMELA and Fermi-LAT. Structure formation analysis reveals a linear growing solution during self-interaction domination, enhancing structures up to ~ 10^(-3) solar masses long before the formation of the first stars.
Many quintessence models possess scaling or attractor solutions where the fraction of dark energy follows the dominant component in previous epochs of the expansion, or phase transitions may happen close to matter-radiation equality time. A non-negligible early dark energy (EDE) fraction around matter-radiation equality could contribute to alleviate the $H_0$ tension. We constrain the EDE fraction using two approaches: first, we use a fluid parameterization that mimics the plateaux of the dominant components in the past. An alternative tomographic approach constrains the EDE density in binned redshift intervals. This allows us to reconstruct $Omega_{de}(z)$ before and after the decoupling of the CMB photons. We have employed Planck data 2018, the Pantheon supernovae of Type Ia (SNIa), galaxy clustering data, the prior on the absolute magnitude of SNIa by SH0ES, and weak lensing (WL) data from KiDS+VIKING-450 and DES-Y1. When we use a minimal parameterization mimicking the background plateaux, EDE has only a small impact on current cosmological tensions. The constraints on the EDE fraction weaken considerably when its sound speed is allowed to vary. By means of our binned analysis we put very tight constraints on the EDE fraction around the CMB decoupling time, $lesssim 0.4%$ at $2sigma$ c.l. We confirm previous results that a significant EDE fraction in the radiation-dominated epoch (RDE) loosens the $H_0$ tension, but tends to worsen the $sigma_8$ one. The presence of EDE in the matter-dominated era helps to alleviate this issue. When the SH0ES prior and WL data are considered in the fitting analysis in combination with data from CMB, SNIa and baryon acoustic oscillations, the EDE fractions are constrained to be $lesssim 2.6%$ in the RDE epoch and $lesssim 1.5%$ in the redshift range $zin (100,1000)$ at $2sigma$ c.l. The tensions remain at $sim 2-3sigma$ c.l.
We reconsider the dynamics of the Universe in the presence of interactions in the cosmological dark sector. A class of interacting models is introduced via a real function $fleft(rright)$ of the ratio $r$ between the energy densities of the (pressureless) cold dark matter (CDM) and dark energy (DE). The subclass of models for which the ratio $r$ depends only on the scale factor is shown to be equivalent to unified models of the dark sector, i.e. models for which the CDM and DE components can be combined in order to form a unified dark fluid. For specific choices of the function $fleft(rright)$ we recover several models already studied in the literature. We analyse various special cases of this type of interacting models using a suitably modified version of the CLASS code combined with MontePython in order to constrain the parameter space with the data from supernova of type SNe Ia (JLA), the Hubble constant $H_{0}$, cosmic chronometers (CC), baryon acoustic oscilations (BAO) and data from the Planck satellite (Planck TT). Our analysis shows that even if data from the late Universe ($H_{0}$, SNe Ia and CC) indicate an interaction in the dark sector, the data related to the early Universe (BAO and Planck TT) constrain this interaction substantially, in particular for cases in which the background dynamics is strongly affected.
Recent measurements of the Cosmic Microwave Anisotropies power spectra measured by the Planck satellite show a preference for a closed universe at more than $99 %$ Confidence Level. Such a scenario is however in disagreement with several low redshift observables, including luminosity distances of Type Ia Supernovae. Here we show that Interacting Dark Energy (IDE) models can ease the discrepancies between Planck and Supernovae Ia data in a closed Universe. Therefore IDE cosmologies remain as very appealing scenarios, as they can provide the solution to a number of observational tensions in different fiducial cosmologies. The results presented here strongly favour broader analyses of cosmological data, and suggest that relaxing the usual flatness and vacuum energy assumptions can lead to a much better agreement among theory and observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا