Do you want to publish a course? Click here

We consider adversarial machine learning based attacks on power allocation where the base station (BS) allocates its transmit power to multiple orthogonal subcarriers by using a deep neural network (DNN) to serve multiple user equipments (UEs). The DNN that corresponds to a regression model is trained with channel gains as the input and allocated transmit powers as the output. While the BS allocates the transmit power to the UEs to maximize rates for all UEs, there is an adversary that aims to minimize these rates. The adversary may be an external transmitter that aims to manipulate the inputs to the DNN by interfering with the pilot signals that are transmitted to measure the channel gain. Alternatively, the adversary may be a rogue UE that transmits fabricated channel estimates to the BS. In both cases, the adversary carefully crafts adversarial perturbations to manipulate the inputs to the DNN of the BS subject to an upper bound on the strengths of these perturbations. We consider the attacks targeted on a single UE or all UEs. We compare these attacks with a benchmark, where the adversary scales down the input to the DNN. We show that adversarial attacks are much more effective than the benchmark attack in terms of reducing the rate of communications. We also show that adversarial attacks are robust to the uncertainty at the adversary including the erroneous knowledge of channel gains and the potential errors in exercising the attacks exactly as specified.
The perceptual task of speech quality assessment (SQA) is a challenging task for machines to do. Objective SQA methods that rely on the availability of the corresponding clean reference have been the primary go-to approaches for SQA. Clearly, these methods fail in real-world scenarios where the ground truth clean references are not available. In recent years, non-intrusive methods that train neural networks to predict ratings or scores have attracted much attention, but they suffer from several shortcomings such as lack of robustness, reliance on labeled data for training and so on. In this work, we propose a new direction for speech quality assessment. Inspired by humans innate ability to compare and assess the quality of speech signals even when they have non-matching contents, we propose a novel framework that predicts a subjective relative quality score for the given speech signal with respect to any provided reference without using any subjective data. We show that neural networks trained using our framework produce scores that correlate well with subjective mean opinion scores (MOS) and are also competitive to methods such as DNSMOS, which explicitly relies on MOS from humans for training networks. Moreover, our method also provides a natural way to embed quality-related information in neural networks, which we show is helpful for downstream tasks such as speech enhancement.
Holographic displays can generate light fields by dynamically modulating the wavefront of a coherent beam of light using a spatial light modulator, promising rich virtual and augmented reality applications. However, the limited spatial resolution of existing dynamic spatial light modulators imposes a tight bound on the diffraction angle. As a result, todays holographic displays possess low {e}tendue, which is the product of the display area and the maximum solid angle of diffracted light. The low {e}tendue forces a sacrifice of either the field of view (FOV) or the display size. In this work, we lift this limitation by presenting neural {e}tendue expanders. This new breed of optical elements, which is learned from a natural image dataset, enables higher diffraction angles for ultra-wide FOV while maintaining both a compact form factor and the fidelity of displayed contents to human viewers. With neural {e}tendue expanders, we achieve 64$times$ {e}tendue expansion of natural images with reconstruction quality (measured in PSNR) over 29dB on simulated retinal-resolution images. As a result, the proposed approach with expansion factor 64$times$ enables high-fidelity ultra-wide-angle holographic projection of natural images using an 8K-pixel SLM, resulting in a 18.5 mm eyebox size and 2.18 steradians FOV, covering 85% of the human stereo FOV.
This paper provides a constructive passivity-based control approach to solve the set-point regulation problem for input-affine continuous nonlinear systems while considering saturation in the inputs. As customarily in passivity-based control, the methodology consists of two steps: energy shaping and damping injection. In terms of applicability, the proposed controllers have two advantages concerning other passivity-based control techniques: (i) the energy shaping is carried out without solving partial differential equations, and (ii) the damping injection is performed without measuring the passive output. The proposed methodology is suitable to control a broad range of physical systems, e.g., mechanical, electrical, and electro-mechanical systems. We illustrate the applicability of the technique by designing controllers for systems in different physical domains, where we validate the analytical results via simulations and experiments.
205 - Romuald A. Janik 2021
We analyze the spaces of images encoded by generative networks of the BigGAN architecture. We find that generic multiplicative perturbations away from the photo-realistic point often lead to images which appear as artistic renditions of the corresponding objects. This demonstrates an emergence of aesthetic properties directly from the structure of the photo-realistic environment coupled with its neural network parametrization. Moreover, modifying a deep semantic part of the neural network encoding leads to the appearance of symbolic visual representations.
201 - Jin Zhao , Fangxing Li , Xi Chen 2021
This paper proposes a new deep learning (DL) based model-free robust method for bulk system on-line load restoration with high penetration of wind power. Inspired by the iterative calculation of the two-stage robust load restoration model, the deep neural network (DNN) and deep convolutional neural network (CNN) are respectively designed to find the worst-case system condition of a load pickup decision and evaluate the corresponding security. In order to find the optimal result within a limited number of checks, a load pickup checklist generation (LPCG) algorithm is developed to ensure the optimality. Then, the fast robust load restoration strategy acquisition is achieved based on the designed one-line strategy generation (OSG) algorithm. The proposed method finds the optimal result in a model-free way, holds the robustness to handle uncertainties, and provides real-time computation. It can completely replace conventional robust optimization and supports on-line robust load restoration which better satisfies the changeable restoration process. The effectiveness of the proposed method is validated using the IEEE 30-bus system and the IEEE 118-bus system, showing high computational efficiency and considerable accuracy.
In this work, we present Eformer - Edge enhancement based transformer, a novel architecture that builds an encoder-decoder network using transformer blocks for medical image denoising. Non-overlapping window-based self-attention is used in the transformer block that reduces computational requirements. This work further incorporates learnable Sobel-Feldman operators to enhance edges in the image and propose an effective way to concatenate them in the intermediate layers of our architecture. The experimental analysis is conducted by comparing deterministic learning and residual learning for the task of medical image denoising. To defend the effectiveness of our approach, our model is evaluated on the AAPM-Mayo Clinic Low-Dose CT Grand Challenge Dataset and achieves state-of-the-art performance, $i.e.$, 43.487 PSNR, 0.0067 RMSE, and 0.9861 SSIM. We believe that our work will encourage more research in transformer-based architectures for medical image denoising using residual learning.
A robust controller is specified, and the stability bounds of the uncertain closed-loop system are determined using the small gain, circle, positive real, and Popov criteria. A graphical approach is employed in order to demonstrate the ease with which the above robustness tests can be carried out on a problem of practical interest. A significant improvement in stability bounds is observed as the analysis moves from the small gain test to the circle, positive real, and Popov tests. In particular, small gain analysis results in the most conservative robust stability bounds, while Popov analysis yields significantly less conservative bounds. This is because traditional small gain type tests allow the uncertainty to be arbitrarily time-varying, whereas Popov analysis restricts the uncertainty to be constant, real parametric uncertainty. Therefore, the results reported here indicate the conservatism associated with small gain analysis, and the effectiveness of Popov analysis, in gauging robust stability in the presence of constant, real parametric uncertainty.
Radio access network (RAN) slicing is an important part of network slicing in 5G. The evolving network architecture requires the orchestration of multiple network resources such as radio and cache resources. In recent years, machine learning (ML) techniques have been widely applied for network slicing. However, most existing works do not take advantage of the knowledge transfer capability in ML. In this paper, we propose a transfer reinforcement learning (TRL) scheme for joint radio and cache resources allocation to serve 5G RAN slicing.We first define a hierarchical architecture for the joint resources allocation. Then we propose two TRL algorithms: Q-value transfer reinforcement learning (QTRL) and action selection transfer reinforcement learning (ASTRL). In the proposed schemes, learner agents utilize the expert agents knowledge to improve their performance on target tasks. The proposed algorithms are compared with both the model-free Q-learning and the model-based priority proportional fairness and time-to-live (PPF-TTL) algorithms. Compared with Q-learning, QTRL and ASTRL present 23.9% lower delay for Ultra Reliable Low Latency Communications slice and 41.6% higher throughput for enhanced Mobile Broad Band slice, while achieving significantly faster convergence than Q-learning. Moreover, 40.3% lower URLLC delay and almost twice eMBB throughput are observed with respect to PPF-TTL.
In this paper we consider the problem of finding a Nash equilibrium (NE) via zeroth-order feedback information in games with merely monotone pseudogradient mapping. Based on hybrid system theory, we propose a novel extremum seeking algorithm which converges to the set of Nash equilibria in a semi-global practical sense. Finally, we present two simulation examples. The first shows that the standard extremum seeking algorithm fails, while ours succeeds in reaching NE. In the second, we simulate an allocation problem with fixed demand.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا