Do you want to publish a course? Click here

129 - Shijing Tan , Yan Zhao , Jin Zhao 2011
Converting CO$_2$ to useful compounds through the solar photocatalytic reduction has been one of the most promising strategies for artificial carbon recycling. The highly relevant photocatalytic substrate for CO$_2$ conversion has been the popular TiO$_2$ surfaces. However, the lack of accurate fundamental parameters that determine the CO$_2$ reduction on TiO$_2$ has limited our ability to control these complicated photocatalysis processes. We have systematically studied the reduction of CO2 at specific sites of the rutile TiO$_2$(110)-1x1 surface using scanning tunneling microscopy at 80 K. The dissociation of CO2 molecules is found to be activated by one electron attachment process and its energy threshold, corresponding to the CO$_2^{dot-}$/CO$_2$ redox potential, is unambiguously determined to be 2.3 eV higher than the onset of the TiO$_2$ conduction band. The dissociation rate as a function of electron injection energy is also provided. Such information can be used as practical guidelines for the design of effective catalysts for CO$_2$ photoreduction.
We examine several ways to manipulate the loss in electromagnetic cloaks, based on transformation electromagnetics. It is found that, by utilizing inherent electric and magnetic losses of metamaterials, perfect wave absorption can be achieved based on several popular designs of electromagnetic cloaks. A practical implementation of the absorber, consisting of ten discrete layers of metamaterials, is proposed. The new devices demonstrate super-absorptivity over a moderate wideband range, suitable for both microwave and optical applications. It is corroborated that the device is functional with a subwavelength thickness and, hence, advantageous compared to the conventional absorbers.
Significant enhancement of evanescent spatial harmonics inside the slabs of media with extreme optical anisotropy is revealed. This phenomenon results from the pumping of standing waves and has the feature of being weakly sensitive to the material losses. Such characteristics may enable subwavelength imaging at considerable distances away from the objects.
84 - Yan Zhao , Pavel A. Belov , 2008
Evanescent wave amplification is observed, for the first time to our knowledge, inside a half-wavelength-thick wire medium slab used for subwavelength imaging. The wire medium is analyzed using both a spatially dispersive finite-difference time-domain (FDTD) method and a full-wave commercial electromagnetic simulator CST Microwave Studio. In this work we demonstrate that subwavelength details of a source placed at a distance of one-tenth of a wavelength from a wire medium slab can be detected inside the slab with a resolution of approximately one-tenth of a wavelength in spite of the fact that they cannot be resolved at the front interface of the device, due to the rapid decay of evanescent spatial harmonics in free space.
A radial-dependent dispersive finite-difference time-domain (FDTD) method is proposed to simulate electromagnetic cloaking devices. The Drude dispersion model is applied to model the electromagnetic characteristics of the cloaking medium. Both lossless and lossy cloaking materials are examined and their operating bandwidth is also investigated. It is demonstrated that the perfect invisibility from electromagnetic cloaks is only available for lossless metamaterials and within an extremely narrow frequency band.
This paper proposes a radial dependent dispersive finite-difference time-domain method for the modelling of electromagnetic cloaking structures. The permittivity and permeability of the cloak are mapped to the Drude dispersion model and taken into account in dispersive FDTD simulations. Numerical simulations demonstrate that under ideal conditions, objects placed inside the cloak are `invisible to external electromagnetic fields. However for the simplified cloak based on linear transformations, the back scattering has a similar level to the case of a PEC cylinder without any cloak, rendering the object still being `visible. It is also demonstrated numerically that the simplified cloak based on high-order transformations can indeed improve the cloaking performance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا