Do you want to publish a course? Click here

110 - Junxiao Xue , Hao Zhou , Yabo Wang 2021
Speaker verification systems have been used in many production scenarios in recent years. Unfortunately, they are still highly prone to different kinds of spoofing attacks such as voice conversion and speech synthesis, etc. In this paper, we propose a new method base on physiological-physical feature fusion to deal with voice spoofing attacks. This method involves feature extraction, a densely connected convolutional neural network with squeeze and excitation block (SE-DenseNet), multi-scale residual neural network with squeeze and excitation block (SE-Res2Net) and feature fusion strategies. We first pre-trained a convolutional neural network using the speakers voice and face in the video as surveillance signals. It can extract physiological features from speech. Then we use SE-DenseNet and SE-Res2Net to extract physical features. Such a densely connection pattern has high parameter efficiency and squeeze and excitation block can enhance the transmission of the feature. Finally, we integrate the two features into the SE-Densenet to identify the spoofing attacks. Experimental results on the ASVspoof 2019 data set show that our model is effective for voice spoofing detection. In the logical access scenario, our model improves the tandem decision cost function (t-DCF) and equal error rate (EER) scores by 4% and 7%, respectively, compared with other methods. In the physical access scenario, our model improved t-DCF and EER scores by 8% and 10%, respectively.
High-fidelity control of quantum bits is paramount for the reliable execution of quantum algorithms and for achieving fault-tolerance, the ability to correct errors faster than they occur. The central requirement for fault-tolerance is expressed in terms of an error threshold. Whereas the actual threshold depends on many details, a common target is the ~1% error threshold of the well-known surface code. Reaching two-qubit gate fidelities above 99% has been a long-standing major goal for semiconductor spin qubits. These qubits are well positioned for scaling as they can leverage advanced semiconductor technology. Here we report a spin-based quantum processor in silicon with single- and two-qubit gate fidelities all above 99.5%, extracted from gate set tomography. The average single-qubit gate fidelities remain above 99% when including crosstalk and idling errors on the neighboring qubit. Utilizing this high-fidelity gate set, we execute the demanding task of calculating molecular ground state energies using a variational quantum eigensolver algorithm. Now that the 99% barrier for the two-qubit gate fidelity has been surpassed, semiconductor qubits have gained credibility as a leading platform, not only for scaling but also for high-fidelity control.
Dissipative Kerr cavity solitons (DKSs) are localized particle-like wave packets that have attracted peoples great interests in the past decades. Besides being an excellent candidate for studying nonlinear physics, DKSs can also enable the generation of broadband frequency combs which have revolutionized a wide range of applications. The formation of DKSs are generally explained by a double balance mechanism. The group velocity dispersion is balanced by the Kerr effect; and the cavity loss is compensated by the parametric gain. Here, we show that DKSs can emerge through the interplay between dispersive loss and Kerr gain, without the participation of group velocity dispersion. By incorporating rectangular gate spectral filtering in a zero-dispersion coherently driven Kerr cavity, we demonstrate the generation of Nyquist-pulse-like solitons with unprecedented ultra-flat spectra in the frequency domain. The discovery of pure dissipation enabled solitons reveals new insights into the cavity soliton dynamics, and provides a useful tool for spectral tailoring of Kerr frequency combs.
The problem of mixed static and dynamic obstacle avoidance is essential for path planning in highly dynamic environment. However, the paths formed by grid edges can be longer than the true shortest paths in the terrain since their headings are artificially constrained. Existing methods can hardly deal with dynamic obstacles. To address this problem, we propose a new algorithm combining Model Predictive Control (MPC) with Deep Deterministic Policy Gradient (DDPG). Firstly, we apply the MPC algorithm to predict the trajectory of dynamic obstacles. Secondly, the DDPG with continuous action space is designed to provide learning and autonomous decision-making capability for robots. Finally, we introduce the idea of the Artificial Potential Field to set the reward function to improve convergence speed and accuracy. We employ Unity 3D to perform simulation experiments in highly uncertain environment such as aircraft carrier decks and squares. The results show that our method has made great improvement on accuracy by 7%-30% compared with the other methods, and on the length of the path and turning angle by reducing 100 units and 400-450 degrees compared with DQN (Deep Q Network), respectively.
The most promising quantum algorithms require quantum processors hosting millions of quantum bits when targeting practical applications. A major challenge towards large-scale quantum computation is the interconnect complexity. In current solid-state qubit implementations, a major bottleneck appears between the quantum chip in a dilution refrigerator and the room temperature electronics. Advanced lithography supports the fabrication of both CMOS control electronics and qubits in silicon. When the electronics are designed to operate at cryogenic temperatures, it can ultimately be integrated with the qubits on the same die or package, overcoming the wiring bottleneck. Here we report a cryogenic CMOS control chip operating at 3K, which outputs tailored microwave bursts to drive silicon quantum bits cooled to 20mK. We first benchmark the control chip and find electrical performance consistent with 99.99% fidelity qubit operations, assuming ideal qubits. Next, we use it to coherently control actual silicon spin qubits and find that the cryogenic control chip achieves the same fidelity as commercial instruments. Furthermore, we highlight the extensive capabilities of the control chip by programming a number of benchmarking protocols as well as the Deutsch-Josza algorithm on a two-qubit quantum processor. These results open up the path towards a fully integrated, scalable silicon-based quantum computer.
Intelligence services are playing an increasingly important role in the operation of our society. Exploring the evolution mechanism, boundaries and challenges of service ecosystem is essential to our ability to realize smart society, reap its benefits and prevent potential risks. We argue that this necessitates a broad scientific research agenda to study service ecosystem that incorporates and expands upon the disciplines of computer science and includes insights from across the sciences. We firstly outline a set of research issues that are fundamental to this emerging field, and then explores the technical, social, legal and institutional challenges on the study of service ecosystem.
134 - Xiao Xue , Deyu Zhou , Yaodan Guo 2020
With the development of cloud computing, service computing, IoT(Internet of Things) and mobile Internet, the diversity and sociality of services are increasingly apparent. To meet the customized user demands, Service Ecosystem is emerging as a complex social-technology system, which is formed with various IT services through cross-border integration. However, how to analyze and promote the evolution mechanism of service ecosystem is still a serious challenge in the field, which is of great significance to achieve the expected system evolution trends. Based on this, this paper proposes a value-driven analysis framework of service ecosystem, including value creation, value operation, value realization and value distribution. In addition, a computational experiment system is established to verify the effectiveness of the analysis framework, which stimulates the effect of different operation strategies on the value network in the service ecosystem. The result shows that our analysis framework can provide new means and ideas for the analysis of service ecosystem evolution, and can also support the design of operation strategies. Index
With the development of cloud computing, service computing, IoT(Internet of Things) and mobile Internet, the diversity and sociality of services are increasingly apparent. To meet the customized user demands, service ecosystems begins to emerge with the formation of various IT services collaboration network. However, service ecosystem is a complex social-technology system with the characteristics of natural ecosystems, economic systems and complex networks. Hence, how to realize the multi-dimensional evaluation of service ecosystem is of great significance to promote its sound development. Based on this, this paper proposes a value entropy model to analyze the performance of service ecosystem, which is conducive to integrate evaluation indicators of different dimensions. In addition, a computational experiment system is constructed to verify the effectiveness of value entropy model. The result shows that our model can provide new means and ideas for the analysis of service ecosystem.
Quantum error correction is of crucial importance for fault-tolerant quantum computers. As an essential step towards the implementation of quantum error-correcting codes, quantum non-demolition (QND) measurements are needed to efficiently detect the state of a logical qubit without destroying it. Here we implement QND measurements in a Si/SiGe two-qubit system, with one qubit serving as the logical qubit and the other serving as the ancilla. Making use of a two-qubit controlled-rotation gate, the state of the logical qubit is mapped onto the ancilla, followed by a destructive readout of the ancilla. Repeating this procedure enhances the logical readout fidelity from $75.5pm 0.3%$ to $94.5 pm 0.2%$ after 15 ancilla readouts. In addition, we compare the conventional thresholding method with an improved signal processing method called soft decoding that makes use of analog information in the readout signal to better estimate the state of the logical qubit. We demonstrate that soft decoding leads to a significant reduction in the required number of repetitions when the readout errors become limited by Gaussian noise, for instance in the case of readouts with a low signal-to-noise ratio. These results pave the way for the implementation of quantum error correction with spin qubits in silicon.
523 - Pei Lv , Haiyu Yu , Junxiao Xue 2019
Localizing objects with weak supervision in an image is a key problem of the research in computer vision community. Many existing Weakly-Supervised Object Localization (WSOL) approaches tackle this problem by estimating the most discriminative regions with feature maps (activation maps) obtained by Deep Convolutional Neural Network, that is, only the objects or parts of them with the most discriminative response will be located. However, the activation maps often display different local maximum responses or relatively weak response when one image contains multiple objects with the same type or small objects. In this paper, we propose a simple yet effective multi-scale discriminative region discovery method to localize not only more integral objects but also as many as possible with only image-level class labels. The gradient weights flowing into different convolutional layers of CNN are taken as the input of our method, which is different from previous methods only considering that of the final convolutional layer. To mine more discriminative regions for the task of object localization, the multiple local maximum from the gradient weight maps are leveraged to generate the localization map with a parallel sliding window. Furthermore, multi-scale localization maps from different convolutional layers are fused to produce the final result. We evaluate the proposed method with the foundation of VGGnet on the ILSVRC 2016, CUB-200-2011 and PASCAL VOC 2012 datasets. On ILSVRC 2016, the proposed method yields the Top-1 localization error of 48.65%, which outperforms previous results by 2.75%. On PASCAL VOC 2012, our approach achieve the highest localization accuracy of 0.43. Even for CUB-200-2011 dataset, our method still achieves competitive results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا