Do you want to publish a course? Click here

73 - Xiaolu Lu , Dongxu Li , Xiang Li 2014
In this paper, we propose a 2D based partition method for solving the problem of Ranking under Team Context(RTC) on datasets without a priori. We first map the data into 2D space using its minimum and maximum value among all dimensions. Then we construct window queries with consideration of current team context. Besides, during the query mapping procedure, we can pre-prune some tuples which are not top ranked ones. This pre-classified step will defer processing those tuples and can save cost while providing solutions for the problem. Experiments show that our algorithm performs well especially on large datasets with correctness.
119 - Xiang Li , Bei Zhou , Hao-Ning He 2013
The existence of fast radio bursts (FRBs), a new type of extragalatic transients, has been established recently and quite a few models have been proposed. In this work we discuss the possible connection between the FRB sources and ultra-high energy ($>10^{18}$ eV) cosmic rays. We show that in the blitzar model and the model of merging binary neutron stars, the huge energy release of each FRB central engine together with the rather high rate of FRBs, the accelerated EeV cosmic rays may contribute significantly to the observed ones. In other FRB models including for example the merger of double white dwarfs and the energetic magnetar radio flares, no significant EeV cosmic ray is expected. We also suggest that the mergers of double neutron stars, even if they are irrelevant to FRBs, may play a non-ignorable role in producing EeV cosmic ray protons if supramassive neutron stars were formed in a good fraction of mergers and the merger rate is $gtrsim 10^{3}~{rm yr^{-1}~ Gpc^{-3}}$. Such a possibility will be unambiguously tested in the era of gravitational wave astronomy.
82 - Xiaolu Lu , Dongxu Li , Xiang Li 2013
Context-aware database has drawn increasing attention from both industry and academia recently by taking users current situation and environment into consideration. However, most of the literature focus on individual context, overlooking the team users. In this paper, we investigate how to integrate team context into database query process to help the users get top-ranked database tuples and make the team more competitive. We introduce naive and optimized query algorithm to select the suitable records and show that they output the same results while the latter is more computational efficient. Extensive empirical studies are conducted to evaluate the query approaches and demonstrate their effectiveness and efficiency.
Background: Zipfs law and Heaps law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipfs law and the Heaps law motivates different understandings on the dependence between these two scalings, which is still hardly been clarified. Methodology/Principal Findings: In this article, we observe an evolution process of the scalings: the Zipfs law and the Heaps law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps law still exists with the disappearance of strict Zipfs law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States(U.S.) domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. Conclusions/Significance: The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipfs law and the Heaps law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا