Do you want to publish a course? Click here

MnBi2Te4 and MnBi4Te7 are intrinsic antiferromagnetic topological insulators, offering a promising materials platform for realizing exotic topological quantum states. However, high densities of intrinsic defects in these materials not only cause bulk metallic conductivity, preventing the measurement of quantum transport in surface states, but may also affect magnetism and topological properties. In this paper, we show by density functional theory calculations that the strain induced by the internal heterostructure promotes the formation of large-size-mismatched antisite defect BiMn in MnBi2Te4; such strain is further enhanced in MnBi4Te7, giving rise to even higher BiMn density. The abundance of intrinsic BiMn donors results in degenerate n-type conductivity under the Te-poor growth condition. Our calculations suggest that growths in a Te-rich condition can lower the Fermi level, which is supported by our transport measurements. We further show that the internal strain can also enable efficient doping by large-size-mismatched substitutional NaMn acceptors, which can compensate BiMn donors and lower the Fermi level. Na doping may pin the Fermi level inside the bulk band gap even at the Te-poor limit in MnBi2Te4. Furthermore, facile defect formation in MnSb2Te4 and its implication in Sb doping in MnBi2Te4 as well as the defect segregation in MnBi4Te7 are discussed. The defect engineering and doping strategies proposed in this paper will stimulate further studies for improving synthesis and for manipulating magnetic and topological properties in MnBi2Te4, MnBi4Te7, and related compounds.
Fe5-xGeTe2 is a van der Waals material with one of the highest reported bulk Curie temperatures, $T_C$ ~ 310K. In this study, theoretical calculations and experiments are utilized to demonstrate that the magnetic ground state is highly sensitive to local atomic arrangements and the interlayer stacking. Cobalt substitution is found to be an effective way to manipulate the magnetic properties while also increasing the ordering temperature. In particular, cobalt substitution up to 30% enhances $T_C$ and changes the magnetic anisotropy, while approximately 50% cobalt substitution yields an antiferromagnetic state. Single crystal x-ray diffraction evidences a structural change upon increasing the cobalt concentration, with a rhombohedral cell observed in the parent material and a primitive cell observed for ~46% cobalt content relative to iron. First principles calculations demonstrate that it is a combination of high cobalt content and the concomitant change to primitive layer stacking that produces antiferromagnetic order. These results illustrate the sensitivity of magnetism in Fe5-xGeTe2 to composition and structure, and emphasize the important role of structural order/disorder and layer stacking in cleavable magnetic materials.
Two-dimensional charge carrier accumulation at oxide heterointerfaces presents a paradigm shift for oxide electronics. Like a capacitor, interfacial charge buildup couples to an electric field across the dielectric medium. To prevent the so-called polar catastrophe, several charge screening mechanisms emerge, including polar distortions and interfacial intermixing which reduce the sharpness of the interface. Here, we examine how atomic intermixing at oxide interfaces affect the balance between polar distortions and electric potential across the dielectric medium. We find that intermixing moves the peak charge distribution away from the oxide/oxide interface; thereby changing the direction of polar distortions away from this boundary with minimal effect on the electric field. This opposing electric field and polar distortions is equivalent to the transient phase transition tipping point observed in double well ferroelectrics; resulting in an anomalous dielectric response -- a possible signature of local negative differential capacitance, with implications for designing dissipationless oxide electronics.
A 2D electron gas system in an oxide heterostructure serves as an important playground for novel phenomena. Here, we show that, by using fractional delta-doping to control the interfaces composition in LaxSr1-xTiO3/SrTiO3 artificial oxide superlattices, the filling-controlled 2D insulator-metal transition can be realized. The atomic-scale control of d-electron band filling, which in turn contributes to the tuning of effective mass and density of the charge carriers, is found to be a fascinating route to substantially enhanced carrier mobilities.
The adsorption of an adenine molecule on graphene is studied using a first-principles van der Waals functional (vdW-DF) [Dion et al., Phys. Rev. Lett. 92, 246401 (2004)]. The cohesive energy of an ordered adenine overlayer is also estimated. For the adsorption of a single molecule, we determine the optimal binding configuration and adsorption energy by translating and rotating the molecule. The adsorption energy for a single molecule of adenine is found to be 711 meV, which is close to the calculated adsorption energy of the similar-sized naphthalene. Based on the single molecular binding configuration, we estimate the cohesive energy of a two-dimensional ordered overlayer. We find a significantly stronger binding energy for the ordered overlayer than for single-molecule adsorption.
Hydrogen adsorption by the metal organic framework (MOF) structure Zn2(BDC)2(TED) is investigated using a combination of experimental and theoretical methods. By use of the nonempirical van der Waals density-functional (vdW-DF) approach, it is found that the locus of deepest H2 binding positions lies within two types of narrow channel. The energies of the most stable binding sites, as well as the number of such binding sites, are consistent with the values obtained from experimental adsorption isotherms and heat of adsorption data. Calculations of the shift of the H-H stretch frequency when adsorbed in the MOF give a value of approximately -30 cm-1 at the strongest binding point in each of the two channels. Ambient temperature infrared absorption spectroscopy measurements give a hydrogen peak centered at 4120 cm-1, implying a shift consistent with the theoretical calculations.
We examine the performance of a recently developed nonlocal density functional in predicting a model noncovalent interaction, the weak bond between an aromatic $pi$ system and an aliphatic C-H group. The new functional is a significant improvement over traditional density functionals, providing results which compare favorably to high-level quantum-chemistry techniques but at considerably lower computational cost. Interaction energies in several model C-H/$pi$ systems are in generally good agreement with coupled-cluster calculations, though equilibrium distances are consistently overpredicted when using the revPBE functional for exchange. The new functional correctly predicts changes in energy upon addition of halogen substituents.
The effect of intermixing at the interface of short period PbTiO$_3$/SrTiO$_3$ superlattices is studied using first-principles density functional theory. The results indicate that interfacial intermixing significantly enhances the polarization within the superlattice. This enhancement is directly related to the off-centering of Pb and Sr cations and can be explained through a discussion of interacting dipoles. This picture should be general for a wide range of multicomponent superlattices and may have important consequences for the design of ferroelectric devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا