Do you want to publish a course? Click here

Tuning Fermi Levels in Intrinsic Antiferromagnetic Topological Insulators MnBi2Te4 and MnBi4Te7 by Defect Engineering and Chemical Doping

63   0   0.0 ( 0 )
 Added by Mao-Hua Du
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

MnBi2Te4 and MnBi4Te7 are intrinsic antiferromagnetic topological insulators, offering a promising materials platform for realizing exotic topological quantum states. However, high densities of intrinsic defects in these materials not only cause bulk metallic conductivity, preventing the measurement of quantum transport in surface states, but may also affect magnetism and topological properties. In this paper, we show by density functional theory calculations that the strain induced by the internal heterostructure promotes the formation of large-size-mismatched antisite defect BiMn in MnBi2Te4; such strain is further enhanced in MnBi4Te7, giving rise to even higher BiMn density. The abundance of intrinsic BiMn donors results in degenerate n-type conductivity under the Te-poor growth condition. Our calculations suggest that growths in a Te-rich condition can lower the Fermi level, which is supported by our transport measurements. We further show that the internal strain can also enable efficient doping by large-size-mismatched substitutional NaMn acceptors, which can compensate BiMn donors and lower the Fermi level. Na doping may pin the Fermi level inside the bulk band gap even at the Te-poor limit in MnBi2Te4. Furthermore, facile defect formation in MnSb2Te4 and its implication in Sb doping in MnBi2Te4 as well as the defect segregation in MnBi4Te7 are discussed. The defect engineering and doping strategies proposed in this paper will stimulate further studies for improving synthesis and for manipulating magnetic and topological properties in MnBi2Te4, MnBi4Te7, and related compounds.

rate research

Read More

Intrinsic magnetic topological insulators (MTIs) MnBi2Te4 and MnBi2Te4/(Bi2Te3)n are expected to realize the high-temperature quantum anomalous Hall effect (QAHE) and dissipationless electrical transport. Extensive efforts have been made on this field but there is still lack of ideal MTI candidate with magnetic ordering of ferromagnetic (FM) ground state. Here, we demonstrate a MTI sample of Mn(Bi0.7Sb0.3)4Te7 which holds the coexistence of FM ground state and topological non-triviality. The dramatic modulation of the magnetism is induced by a charge carrier engineering process by the way of Sb substitution in MnBi4Te7 matrix with AFM ordering. The evolution of magnetism in Mn(Bi1-xSbx)4Te7 is systematically investigated by magnetic measurements and theoretical calculations. The clear topological surface states of the FM sample of x = 0.3 are also verified by angle-resolved photoemission spectra. We also aware that the FM sample of x = 0.3 is close to the charge neutral point. Therefore, the demonstration of intrinsic FM-MTI of Mn(Bi0.7Sb0.3)4Te7 in this work sheds light to the further studies of QAHE realization and optimizations.
Recently, MnBi2Te4 has been discovered as the first intrinsic antiferromagnetic topological insulator (AFM TI), and will become a promising material to discover exotic topological quantum phenomena. In this work, we have realized the successful synthesis of high-quality MnBi2Te4 single crystals by solid-state reactions. The as-grown MnBi2Te4 single crystal exhibits a van der Waals layered structure, which is composed of septuple Te-Bi-Te-Mn-Te-Bi-Te sequences as determined by powder X-ray diffraction (PXRD) and high-resolution high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). The magnetic order below 25 K as a consequence of A-type antiferromagnetic interaction between Mn layers in the MnBi2Te4 crystal suggests the unique interplay between antiferromagnetism and topological quantum states. The transport measurements of MnBi2Te4 single crystals further confirm its magnetic transition. Moreover, the unstable surface of MnBi2Te4, which is found to be easily oxidized in air, deserves attention for onging research on few-layer samples. This study on the first AFM TI of MnBi2Te4 will guide the future research on other potential candidates in the MBixTey family (M = Ni, V, Ti, etc.).
130 - Y. J. Chen , L. X. Xu , J. H. Li 2019
Topological quantum materials coupled with magnetism can provide a platform for realizing rich exotic physical phenomena, including quantum anomalous Hall effect, axion electrodynamics and Majorana fermions. However, these unusual effects typically require extreme experimental conditions such as ultralow temperature or sophisticate material growth and fabrication. Recently, new intrinsic magnetic topological insulators were proposed in MnBi2Te4-family compounds - on which rich topological effects could be realized under much relaxed experimental conditions. However, despite the exciting progresses, the detailed electronic structures observed in this family of compounds remain controversial up to date. Here, combining the use of synchrotron and laser light sources, we carried out comprehensive and high resolution angle-resolved photoemission spectroscopy studies on MnBi2Te4, and clearly identified its topological electronic structures including the characteristic gapless topological surface states. In addition, the temperature evolution of the energy bands clearly reveals their interplay with the magnetic phase transition by showing interesting differences for the bulk and surface states, respectively. The identification of the detailed electronic structures of MnBi2Te4 will not only help understand its exotic properties, but also pave the way for the design and realization of novel phenomena and applications.
405 - X. Lei , L. Zhou , Z.Y. Hao 2020
Through a thorough magneto-transport study of antiferromagnetic topological insulator MnBi2Te4 (MBT) thick films, a positive linear magnetoresistance (LMR) with a two-dimensional (2D) character is found in high perpendicular magnetic fields and temperatures up to at least 260 K. The nonlinear Hall effect further reveals the existence of high-mobility surface states in addition to the bulk states in MBT. We ascribe the 2D LMR to the high-mobility surface states of MBT, thus unveiling a transport signature of surface states in thick MBT films. A suppression of LMR near the Neel temperature of MBT is also noticed, which might suggest the gap opening of surface states due to the paramagnetic-antiferromagnetic phase transition of MBT. Besides these, the failure of the disorder and quantum LMR model in explaining the observed LMR indicates new physics must be invoked to understand this phenomenon.
88 - M.Z. Shi , B. Lei , C. S. Zhu 2019
The observation of quantized anomalous Hall conductance in the forced ferromagnetic state of MnBi2Te4 thin flakes has attracted much attentions. However, strong magnetic field is needed to fully polarize the magnetic moments due to the large antiferromagnetic interlayer exchange coupling. Here, we reported the magnetic and electrical transport properties of the magnetic van der Waals MnBi2Te4(Bi2Te3)n (n=1,2) single crystals, in which the interlayer antiferromagnetic exchange coupling is greatly suppressed with the increase of the separation layers Bi2Te3. MnBi4Te7 and MnBi6Te10 show weak antiferromagnetic transition at 12.3 and 10.5 K, respectively. The ferromagnetic hysteresis was observed at low temperature for both of the crystals, which is quite crucial for realizing the quantum anomalous Hall effect without external magnetic field. Our work indicates that MnBi2Te4(Bi2Te3)n (n=1,2) provide ideal platforms to investigate the rich topological phases with going to their 2D limits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا